HW \#1

Please, write clearly and justify all your steps, to get proper credit for your work.
(1) In a class of 125 students, the instructor gave 40 A 's, 30 B 's, 35 C 's, 15 D's and 5 F's. Compute the relative frequency of the 5 events. Compute the relative frequency of getting a grade that is better than C .

Solution.

$P(A)=40 / 125=8 / 25, P(B)=30 / 125=6 / 25, P(C)=35 / 125=7 / 25$,
$P(D)=15 / 125=3 / 25, P(F)=5 / 125=1 / 25$.
$P($ better than C$)=P(B)+P(A)=14 / 25$
(2) Let $S=A \cup B, P(A)=0.6, P(B)=0.8$.
(a) Find $P(A \cap B)$
(b) Find $P\left(A^{c} \cup B^{c}\right)$

Solution.

(a) $1=P(S)=P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Hence $P(A \cap B)=P(A)+P(B)-P(A \cup B)=1.4-1=0.4$
(b) $P\left(A^{c} \cup B^{c}\right)=P\left((A \cap B)^{c}\right)=1-P(A \cap B)=0.6$
(3) Let $P(A \cap B)=0.2, P(A)=0.5, P(B)=0.4$.
(a) Find $P(A \cup B)$
(b) Find $P\left(A^{c} \cup B^{c}\right)$
(c) Find $P\left(A^{c} \cap B\right)$

Solution.

(a) $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.5+0.4-0.2=0.7$
(b) $P\left(A^{c} \cup B^{c}\right)=P\left((A \cap B)^{c}\right)=1-P(A \cap B)=1-0.2=0.8$
(c) $P\left(A^{c} \cap B\right)=P(B \backslash A)=P(B)-P(A \cap B)=0.4-0.2=0.2$
(4) How many different ways can you rearrange the letters of the following words
(a) OLSEN
(b) CALCUTTA

Solution.

(a) The 5 letters are distinct. Number of permutations is:

$$
(5)(4)(3)(2)(1)=5!
$$

(b) Of the 8 letters, the letters A, C and T are repeated. Number of permutations is:

$$
\frac{8!}{2!2!2!}
$$

(5) A bowl contains 20 chips, of which 9 are red, 8 are blue and 3 are white. Six chips are drawn at random and without replacement.
(i) Compute the probability that each of the 6 chips is red. Solution.

$$
P(6 \text { red })=\frac{\binom{9}{6}}{\binom{20}{6}}
$$

(ii) Compute the probability that 3 chips are red and 3 chips are blue. Solution.

$$
P(3 \text { red, } 3 \text { blue })=\frac{\binom{9}{3}\binom{8}{3}}{\binom{00}{6}}
$$

