HW \#3

Please, write clearly and justify all your steps, to get proper credit for your work.
(1) [8 Pts] Suppose that the probability density function $f(x)$ of the length X of an international phone call, rounded up to the next minute is given by:

x	1	2	3	4
$f(x)$	0.2	0.5	0.2	0.1

(a) Calculate $P(X \leq 2), P(X<2)$, and $P(X \geq 1)$.
(b) Plot the cumulative distribution function $F(x)$.
(c) Calculate the mean $\mu=E(X)$.
(d) Calculate $E\left(X^{2}\right)$ and us it to compute the variance σ^{2}.
(a) $P(X \leq 2)=f(1)+f(2)=0.2+0.5=0.7 ; P(X<2)=f(1)=0.2$; $P(X \geq 1)=\sum_{x=1}^{4} f(x)=1$.
(c) $\mu=E(X)=\sum_{x=1}^{4} x f(x)=1 \cdot 0.2+2 \cdot 0.5+3 \cdot 0.2+4 \cdot 0.1=2.2$
(d) $E\left(X^{2}\right)=\sum_{x=1}^{4} x^{2} f(x)=1 \cdot 0.2+4 \cdot 0.5+9 \cdot 0.2+16 \cdot 0.1=5.6$.
$\sigma^{2}=E\left(X^{2}\right)-\mu^{2}=5.6-(2.2)^{2}=0.76$
(2)[8 Pts] A job applicant to a company is required to submit one, two, three, four, or five forms depending on the nature of the job. Let X to denote the number of forms required of an applicant. The probability that x forms are required is known to be proportional to x, that is,

$$
p(x)=k x, \text { for } x=1,2, \ldots, 5 .
$$

(a) Calculate the value k so that $p(x)$ is a probability mass function.
(b) What is the probability that at least 2 forms are needed?
(c) What is the probability that at most 2 forms are needed?
(d) Calculate $E\left(X^{2}\right)$ and us it to compute the variance σ^{2}.
(a) $1=\sum_{x=1}^{5} k x=k(1+2+3+4+5)=15 k$. Hence $k=\frac{1}{15}$.
(b) $P(X \geq 2)=1-P(X<2)=1-f(1)=\frac{14}{15}$.
(c) $P(X \leq 2)=f(1)+f(2)=\frac{3}{15}$.
(d) $E\left(X^{2}\right)=\sum_{x=1}^{5} x^{2} f(x)=\frac{1}{15} \sum_{x=1}^{5} x^{3}=15 . \mu=E(X)=\sum_{x=1}^{5} x f(x)=$ $\frac{1}{15} \sum_{x=1}^{5} x^{2}=\frac{11}{3} \cdot \sigma^{2}=E\left(X^{2}\right)-\mu^{2}=15-\left(\frac{11}{3}\right)^{2}=\frac{14}{9}$.
(3)[10 Pts] This problem requires R . Using the data of Problem (1)
(a) Plot the probability mass function. Remember to label the x and y axes.
(b) Verify that the values of the probability add up to 1.
(c) Plot the cumulative distribution function. Remember to label the x and y axes.
You need to print your plots and your code.
(a)
$x<-c(i=1: 4)$
$y<-c(0.2,0.5,0.2,0.1)$
plot(x,y, xlab="x", ylab="pmf", main="probability mass function", $y \lim =c(0,1), x \operatorname{lim=c}(0,5), p c h=15, ~ c o l=" b l u e ")$

Alternatively:
plot(x,y, type="h", xlab="x", ylab="pmf", main="probability mass function", ylim=c (0,1), xlim=c $(0,5), 1 w d=2, c o l=" b l a c k ")$
points($\mathrm{x}, \mathrm{y}, \mathrm{pch}=16$, cex=2, col="blue")
(b)
sum (p)
(c)
$x<-c(i=1: 4)$
$\mathrm{y} 2<-c(0.2,0.7,0.9,1)$
plot(x,y2, type="s",xlab="x", ylab="cdf", main="cumulative density function", $y \lim =c(0,1), x \lim =c(0,5), p c h=15, ~ c o l=" b l u e ")$

