HW \#5

You can use the Tables of the Poisson distribution or R to compute the numerical solution of the problems 1-3 below.
(1) [3 Pts$]$ On average, 2.5 telephone calls per minute are received at the UH's switchboard. Assuming that the number of incoming calls per minute follows a Poisson distribution, compute the probability that at any given minute there will be more than 2 calls.
(2) [3 Pts] Suppose that in one year the number of industrial accidents X follows a Poisson distribution with mean 3.0. If each accident leads to an insurance claim of $\$ 5,000$, how much money would an insurance company need to keep in reserve to be 95% certain that the claims are covered?
(3)[4 Pts] A delivery company found that the number of complaints was six per years on average. Assuming that the number of complaints follows a Poisson distribution, calculate the probability of having no complaints in
(a) all of next year;
(b) the next quarter.
(4)[4 Pts] You have the following commands in R to compute probabilities associated with binomial, Poisson and negative binomial distributions.
dbinom(x, size, prob): $P(X=x)$ for $X \sim B$ (size, prob)
pbinom(q, size, prob): $P(X \leq q x)$ for $X \sim B($ size, prob $)$
dpois(x, lambda): $P(X=x)$ for $X \sim \operatorname{Poisson}(\lambda)$
ppois(q, lambda): $P(X \leq q)$ for $X \sim \operatorname{Poisson}(\lambda)$
dnbinom(x, size, prob): $P(X=x)$ for $X \sim N B($ size, prob $)$
pnbinom(q, size, prob): $P(X \leq q x)$ for $X \sim N B($ size, prob $)$
Note that the negative binomial rv in R counts the number of failures that occur before getting the desired success. It is not exactly the same as I defined in class but it is closely related.

Use these commands to solve problems (3) and (5)(a-b) from past HW4 and problem (1) in this HW5. Print your result to return your work to me with Quiz \#5.
(5) [6 Pts] Let X and Y have the following joint p.d.f.

		\mathbf{y}	
\mathbf{y}	1	2	3
1	0.05	0.15	0.15
2	0.10	0.10	0.10
3	0.15	0.15	0.05

(a) Calculate the marginal densities. Are X and Y are independent?
(b) Compute the means and variances.
(c) Are X and Y positively correlated? negatively correlated? uncorrelated?
(6) [4 Pts] Let $W=1-X+2 Y$ be a discrete random variable where X, Y are independent discrete random variables with $\mu_{X}=5, \mu_{Y}=2$, and $\sigma_{Y}^{2}=2, \sigma_{X}^{2}=1$. Compute μ_{W} and σ_{W}^{2}.
(7)[Extra Credit] Let X, Y be discrete random variables, where $X=1,2,3,4, Y=1,2,3$, with the joint distribution given by the matrix defined in R below

$$
p<-\operatorname{matrix}(c(.02, .04, .01, .06, .15, .15, .02, .20, .14, .10, .10, .01), \text { ncol=4) }
$$

Use R to:
(a) Verify that p is a probability mass function (i.e., check that it sums up to 1)
(a) Define the marginal densities (hint: you can use the apply function) and plot them.
(b) Compute the means and variances.
(c) Are X and Y positively correlated? negatively correlated? uncorrelated?

