HW \#5

You can use the Tables of the Poisson distribution or R to compute the numerical solution of the problems below. Please recall the commands associated with the Poisson pmf
dpois(x, lambda): $P(X=x)$ for $X \sim \operatorname{Poisson}(\lambda)$
ppois(q, lambda): $P(X \leq q)$ for $X \sim \operatorname{Poisson}(\lambda)$
(1) [3 Pts] On average, 2.5 telephone calls per minute are received at the UH's switchboard. Assuming that the number of incoming calls per minute follows a Poisson distribution, compute the probability that at any given minute there will be more than 2 calls.
(2)[3 Pts] Suppose that in one year the number of industrial accidents X follows a Poisson distribution with mean 3.0. If each accident leads to an insurance claim of $\$ 5,000$, how much money would an insurance company need to keep in reserve to be 95% certain that the claims are covered?
(3)[4 Pts] A delivery company found that the number of complaints was six per years on average. Assuming that the number of complaints follows a Poisson distribution, calculate the probability of having no complaints in
(a) all of next year;
(b) the next quarter.
(4) [6 Pts] Let X and Y have the following joint p.d.f.

		\mathbf{x}	
\mathbf{y}	1	2	3
1	0.05	0.15	0.15
2	0.10	0.10	0.10
3	0.15	0.15	0.05

(a) Calculate the marginal densities. Are X and Y are independent?
(b) Compute the means and variances.
(c) Are X and Y positively correlated? negatively correlated? uncorrelated?
(5) [4 Pts$]$ Let $W=1-X+2 Y$ be a discrete random variable where X, Y are independent discrete random variables with $\mu_{X}=5, \mu_{Y}=2$, and $\sigma_{Y}^{2}=2, \sigma_{X}^{2}=1$. Compute μ_{W} and σ_{W}^{2}.

