HW \#5

You have the following commands in R to compute probabilities associated with Poisson distributions.
dpois(x, lambda): $P(X=x)$ for $X \sim \operatorname{Poisson}(\lambda)$
ppois(q, lambda): $P(X \leq q)$ for $X \sim \operatorname{Poisson}(\lambda)$
(1)[3 Pts] On average, 2.5 telephone calls per minute are received at the UH's switchboard. Assuming that the number of incoming calls per minute follows a Poisson distribution, compute the probability that at any given minute there will be more than 2 calls.

Denote as X the number of incoming calls per minute. Thus

$$
P(X>2)=1-P(X \leq 2)
$$

Using R with $\lambda=2.5$:
> 1-ppois $(2,2.5)$
[1] 0.4561869
(2) [3 Pts] Suppose that in one year the number of industrial accidents X follows a Poisson distribution with mean 3.0. If each accident leads to an insurance claim of $\$ 5,000$, how much money would an insurance company need to keep in reserve to be 95% certain that the claims are covered?

You can list the values of the cumulative Poisson distribution with $\lambda=3$ until you find a value above 0.95. Using R :

```
    > ppois(4,lambda=3)
```

[1] 0.8152632
> ppois (5,lambda=3)
[1] 0.9160821
> ppois(6,lambda=3)
[1] 0.9664915
Hence to be 95\% confident to be covered, the insurance company should be expected to cover up to 6 claims per year. Thus, it needs to set aside $\$ 6 \cdot 5,000=\$ 30,000$.
(3)[4 Pts] A delivery company found that the number of complaints was six per years on average. Assuming that the number of complaints follows a Poisson distribution, calculate the probability of having no complaints in
(a) all of next year;
(b) the next quarter.
(a) Poisson distribution with $\lambda=6$. We compute $P(X=0)$:
> dpois(0,lambda=6)
[1] 0.002478752
(b) Poisson distribution with $\lambda=1.5 . P(X=0)$:
> dpois(0,lambda=1.5)
[1] 0.2231302
(4) [6 Pts] Let X and Y have the following joint p.d.f.

		\mathbf{x}	
\mathbf{y}	1	2	3
1	0.05	0.15	0.15
2	0.10	0.10	0.10
3	0.15	0.15	0.05

(a) Calculate the marginal densities. Are X and Y are independent?
(b) Compute the means and variances.
(c) Are X and Y positively correlated? negatively correlated? uncorrelated?

Here is the solution with the R .
$>\mathrm{p}$ <- matrix(c(.05,.10,.15,.15,.10,.15,.15,.10,.05),ncol=3)
> px <- apply(p,2,sum) \#\# column-sum: it creates marginal probabilities for X
$>\mathrm{px}$
[1] 0.30 .40 .3
> py <- apply(p,1,sum) \#\# row-sum: it creates marginal probabilities for Y
> py
[1] $0.35 \quad 0.30 \quad 0.35$
$>\mathrm{x}<-\mathrm{c}(1,2,3)$
$>y<-c(1,2,3)$
$>E X<-\operatorname{sum}(p x * x)$
$>$ EX
[1] 2
> EY <- sum(py*y)
> EY
[1] 2
> EX2 <- sum (px*x*x)
> EY2 <- sum (py*y*y)
> VarX <- EX2-EX*EX
> VarX
[1] 0.6
> VarY <- EY2-EY*EY
> VarY
[1] 0.7
$>\mathrm{A}=0$
$>$ for(i in 1:3)for(j in 1:3)A <- A+p[i,j]*x[i]*y[j]
> EXY<-A
$>$ EXY
[1] 3.8
> COVXY <- EXY-EX*EY
> COVXY
[1] -0.2
Negative correlation.
X, Y not independent since $f(2,2)=0.10 \neq f_{1}(2) * f_{2}(2)=0.4 * 0.3$
(5) [4 Pts] Let $W=1-X+2 Y$ be a discrete random variable where X, Y are independent discrete random variables with $\mu_{X}=5, \mu_{Y}=2$, and $\sigma_{X}^{2}=1, \sigma_{Y}^{2}=2$. Compute μ_{W} and σ_{W}^{2}.

$$
\begin{gathered}
\mu_{W}=1-\mu_{X}+2 \mu_{Y}=1-5+(2)(2)=0 \\
\sigma_{W}^{2}=\sigma_{X}^{2}+4 \sigma_{Y}^{2}=1+(4)(2)=9
\end{gathered}
$$

