HW \#5

To find the numerical solutions of problems 4-6, you can should the commands pnorm and qnorm in R .
(1) Let X and Y have the following joint p.d.f.

		\mathbf{y}	
\mathbf{y}	1	2	3
1	0.05	0.15	0.15
2	0.10	0.10	0.10
3	0.15	0.15	0.05

(a) Calculate the marginal densities. Are X and Y are independent?
(b) Compute the means and variances.
(c) Are X and Y positively correlated? negatively correlated? uncorrelated?
(2) Let $W=1-X+2 Y$ be a discrete random variable where X, Y are independent discrete random variables with $\mu_{X}=5, \mu_{Y}=2$, and $\sigma_{Y}^{2}=2, \sigma_{X}^{2}=1$. Compute μ_{W} and σ_{W}^{2}.
(3)[4 Pts] let X be a continuous r.v. with pdf $f(x)=3(1-x)^{2}, 0 \leq x \leq 1$.
(a) Graph the pdf;
(a) find the mean of X;
(c) compute $P(0.1<X<0.5)$;
(d) compute $P(X>0.4)$.
(4) $[4 \mathrm{Pts}]$ Let Z be a standard normal random variable and calculate the following probabilities, drawing pictures wherever appropriate
(a) $P(Z \leq 1)$;
(a) $P(|Z| \leq 2.5)$;
(c) $P(1.37<Z)$;
(d) $P(-1.5<Z<2)$.
(5)[4 Pts] Let X be a normal random variable with mean 12 and standard deviation 3. Calculate the following probabilities
(a) $P(X \leq 4)$;
(a) $P(|X| \leq 6)$;
(c) $P(X>4.5)$;
(d) $P(-1.5<X<4)$.
(6)[4 Pts] Determine the value of the constant c that makes the probability statement correct.
(a) $P(0 \leq Z \leq c)=0.291$;
(a) $P(|Z| \leq c)=0.668$;
(c) $P(c<Z)=0.121$;
(d) $P(Z<c)=0.9838$.

