HW \#6

Please, write clearly and justify all your steps, to get proper credit for your work.
(1) [6 Pts] Let X and Y have the following joint p.d.f. Compute $\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}$ and ρ in each case: (a)

	\mathbf{x}		
\mathbf{y}	1		2
1	0.5		0
2	0		0.5

(b)

	\mathbf{x}		
\mathbf{y}	1		2
1	0.25		0.25
2	0.25		0.25

(c)

	\mathbf{x}		
\mathbf{y}	1		2
1	0.1		0.4
2	0.4		0.1

$(2)[6 \mathrm{Pts}]$ Let X and Y have the following joint p.d.f.

		\mathbf{x}	
\mathbf{y}	1	2	3
1	0.05	0.15	0.15
2	0.10	0.10	0.10
3	0.15	0.15	0.05

(a) Calculate the marginal densities. Are X and Y are independent?
(b) Compute the means and variances.
(c) Are X and Y positively correlated? negatively correlated? uncorrelated?
(3) [4 Pts] Let $W=1-X+2 Y$ be a discrete random variable where X, Y are independent discrete random variables with $\mu_{X}=5, \mu_{Y}=2$, and $\sigma_{Y}^{2}=2, \sigma_{X}^{2}=1$. Compute μ_{W} and σ_{W}^{2}.
(4) [6 Pts$]$ Let X, Y be discrete random variables, where $X=1,2,3,4, Y=1,2,3$, with the joint distribution given by the matrix defined in R below
p <- matrix (c (. $02, .04, .01, .06, .15, .15, .02, .20, .14, .10, .10, .01), \mathrm{ncol}=4)$
Use R to:
(a) Verify that p is a probability mass function (i.e., check that it sums up to 1)
(a) Define the marginal densities (hint: you can use the apply function) and plot them.
(b) Compute the means and variances.
(c) Are X and Y positively correlated? negatively correlated? uncorrelated?

