HW \#6

To find the numerical solutions, you can use the commands pnorm and qnorm in R.
(1) Let \bar{X} be the mean of a random sample of size $n=48$ from the uniform distribution in the interval $(0,2)$. Approximate the probability $P(0.9<\bar{X}<$ 1.1) using the Central Limit Theorem.
(2) Let \bar{X} be the mean of a random sample of size $n=48$ from a distribution with mean 4 and variance 16. Approximate the probability $P(3.1<\bar{X}<4.6)$ using the Central Limit Theorem.
(3) The profits from investments in individual stocks follow a normal distribution with mean 1 and standard deviation 5 .
(a) If are buying a single random selected stock, what is the probability that your profit is greater than zero?
(b) If are buying a portfolio of 25 randomly selected stocks, what is the probability that your average profit is greater than zero?
(4) The mean and standard deviation measured from a randomly selected sample of $n=42$ mathematics SAT test scores are $\bar{x}=680$ and $s=35$. Find an approximate 99 percent confidence interval for the population mean μ.
(5)[4 Pts] A research conducted at the University of Houston wants to estimate the average SAT test scores in mathematics. Assuming that the population of test scores is normally distributed with standard deviation $\sigma=35$, find the sample size n ensuring that the estimated value of the sample mean is within ± 10 points from the true mean. Use confidence level $\alpha=0.05$.

