HW \#7

To find the numerical solutions, you can use the statistical tables or the commands pnorm and qnorm in R .
(1)[4 Pts] Let \bar{X} be the mean of a random sample of size $n=48$ from the uniform distribution in the interval $(0,2)$. Approximate the probability $P(0.9<\bar{X}<1.1)$ using the Central Limit Theorem.

By the properties of the uniform distribution, $\mu=1, \sigma^{2}=\frac{(0-2)^{2}}{12}=\frac{1}{3}$
Hence $\mu_{\bar{x}}=1, \sigma_{\bar{x}}^{2}=\frac{1}{3 * 48}=\frac{1}{144}, \sigma_{\bar{x}}=1 / 12$
Using R :
$P(0.9<\bar{X}<1.1)=\operatorname{pnorm}(1.1,1,1 / 12)-\operatorname{pnorm}(0.9,1,1 / 12)=0.7699$
Alternatively, using tables:
$P(0.9<\bar{X}<1.1)=P\left(\frac{0.9-1}{1 / 12}<Z<\frac{1.1-1}{1 / 12}\right)=\Phi(1.2)-\Phi(-1.2)=0.7698$
(2)[4 Pts] Let \bar{X} be the mean of a random sample of size $n=48$ from a distribution with mean 4 and variance 16 . Approximate the probability $P(3.1<\bar{X}<4.6)$ using the Central Limit Theorem.

Note that $\sigma_{\bar{x}}=4 / \sqrt{48}$. Using R :
$P(3.1<\bar{X}<4.6)$
$=$ pnorm(4.6,4,4/sqrt(48))-pnorm(3.1,4,4/sqrt(48)) $=0.7911$
Alternatively, using tables:
$P(3.1<\bar{X}<4.6)=P\left(\frac{3.1-4}{4 / \sqrt{48}}<Z<\frac{4.6-4}{4 / \sqrt{48}}\right)=\Phi(1.04)-\Phi(-1.56)=0.792$
(3) [4 Pts] The profits from investments in individual stocks follow a normal distribution with mean 1 and standard deviation 5.
(a) If are buying a single random selected stock, what is the probability that your profit is greater than zero?
(b) If are buying a portfolio of 25 randomly selected stocks, what is the probability that your average profit is greater than zero?
$X \sim N\left(\mu=1, \sigma^{2}=25\right)$
(a) $n=1, \mu_{\bar{X}}=1, \sigma_{\bar{X}}^{2}=\frac{25}{1}, \sigma_{\bar{X}}=5$

Using R :
$P(\bar{X}>0)=1-P(\bar{X} \leq 0)=1$-pnorm $(0,1,5)=0.5792597$
Alternatively, using tables:
$P(\bar{X}>0)=1-P(\bar{X} \leq 0)=1-P\left(Z \leq \frac{0-1}{5}\right)=1-\Phi(-0.2)=0.5793$
(b) $n=25, \mu_{\bar{X}}=1, \sigma_{\bar{X}}^{2}=\frac{25}{25}, \sigma_{\bar{X}}=1$

Using R :
$P(\bar{X}>0)=1-P(\bar{X} \leq 0)=1$-pnorm $(0,1,1)=0.8413447$
Alternatively, using tables:
$P(\bar{X}>0)=1-P(\bar{X} \leq 0) 1-P\left(Z \leq \frac{0-1}{1}\right)=1-\Phi(-1)=0.8413$
(4)[4 Pts] The mean and standard deviation measured from a randomly selected sample of $n=42$ mathematics SAT test scores are $\bar{x}=680$ and $s=$ 35. Find an approximate 99 percent confidence interval for the population mean μ.
99% confidence interval. $1-\alpha=0.99 \Rightarrow \alpha=0.01 \Rightarrow z_{\alpha / 2}=z_{0.005}=2.576$
Note $z_{0.01 / 2}=$ qnorm(1-0.01/2) $=2.575829$

$$
\left[\bar{X}-z_{\alpha / 2} \frac{s}{\sqrt{n}}, \bar{X}+z_{\alpha / 2} \frac{s}{\sqrt{n}}\right]=\left[680-2.576 \frac{35}{\sqrt{42}}, 680+2.576 \frac{35}{\sqrt{42}}\right]=[666.1,693.1]
$$

(5)[4 Pts] A research conducted at the University of Houston wants to estimate the average SAT test scores in mathematics. Assuming that the population of test scores is normally distributed with standard deviation $\sigma=35$, find the sample size n ensuring that the estimated value of the sample mean is within ± 10 points from the true mean. Use confidence level $\alpha=0.05$.

Note $z_{0.05 / 2}=$ qnorm(1-0.05/2) $=1.959964$
Hence:

$$
n \geq \frac{z_{\alpha / 2}^{2} \sigma^{2}}{h^{2}}=\left(\frac{1.96 \cdot 35}{10}\right)^{2}=47.1
$$

Hence we need at least $n=48$.

