HW \#9

Please, write clearly and justify all your steps, to get proper credit for your work.
(1)[4 Pts] Let \bar{X} be the mean of a random sample of size $n=48$ from the uniform distribution in the interval $(0,2)$. Approximate the probability $P(0.9<\bar{X}<1.1)$ using the Central Limit Theorem.
(2)[4 Pts] Let \bar{X} be the mean of a random sample of size $n=48$ from an exponential distribution with mean 4. Approximate the probability $P(3.1<$ $\bar{X}<4.6$) using the Central Limit Theorem.
(3)[4 Pts] The profits from investments in individual stocks follow a normal distribution with mean 1 and standard deviation 5 .
(a) If are buying a single random selected stock, what is the probability that your profit is greater than zero?
(b) If are buying a portfolio of 25 randomly selected stocks, what is the probability that your average profit is greater than zero?
(4)[4 Pts] The mean and standard deviation measured from a randomly selected sample of $n=42$ mathematics SAT test scores are $\bar{x}=680$ and $s=$ 35. Find an approximate 99 percent confidence interval for the population mean μ.
(5)[4 Pts] Let a population be normally distributed with mean μ and standard deviation $\sigma=5$. Find the sample size n such that we are 95 percent confident that the estimate of \bar{x} is within ± 1.5 unit of the true mean μ.

