QUIZ \#2

Please, show your work and write legibly.
NOTE: you can leave your solution in terms of products of fractions and/or binomials; you do no need to compute the numerical value
(1) Two cards are drawn successively and without replacement from a 52-card deck of playing cards. Compute the probabilities associated with the events below:
(a) drawing no heart in both draws;

$$
P(\mathrm{no} \Omega, \mathrm{no} \Omega)=P(\mathrm{no} \Omega) P(\mathrm{no} \Omega \mid \mathrm{no} \Omega)=\frac{39}{52} \frac{38}{51}=0.5588
$$

(b) drawing a ace on the first draw, a heart on the second draw.

$$
\begin{aligned}
P(A, \varnothing) & =P(\mathrm{~A}-\mathrm{no} \varnothing) P(\Omega \mid \mathrm{A}-\mathrm{no} \Omega)+P\left(A^{\ominus}\right) P\left(\Omega \mid A^{\ominus}\right) \\
& =\frac{3}{52} \frac{13}{51}+\frac{1}{52} \frac{12}{51}=0.0192
\end{aligned}
$$

(2) Four cards are drawn successively and without replacement from a 52 -card deck of playing cards. Compute the probabilities associated with the events below:
(a) drawing a heart on the first draw, a heart on the second draw, a club on the third draw, a heart of the fourth draw;
$P(\bigcirc, \bigcirc, \boldsymbol{\phi}, \bigcirc)=P(\bigcirc$ 1st draw $) P(\bigcirc$ 2nd draw $\mid(\bigcirc$ 1st draw $)) P(\boldsymbol{\rho}$ 3rd draw $\mid(\bigcirc$ 1st, 2nd draw $))$
$\times P(\bigcirc$ 4th drawl ($\odot 1$ st, 2nd draw $)$, $\boldsymbol{\circ}$ 3rd draw $)$
$=\frac{13}{52} \frac{12}{51} \frac{13}{50} \frac{11}{49}=0.0034$
(b) drawing the third heart on the fourth draw.
$P($ third heart on the 4 th draw $)=P(2 \bigcirc$ in 3 draws $) P(\odot$ in 4 th draw $\mid(2 \odot$ in 2 draws $))$

$$
=\frac{\binom{13}{2}\binom{39}{1}}{\binom{52}{3}} \frac{11}{49}
$$

