Quiz \#3

Please, write clearly and justify all your steps, to get proper credit for your work.
(1) [4Pts] Suppose that the probability density function $f(x)$ of the length X of an international phone call, rounded up to the next minute, is given by:

x	1	2	3	4
$f(x)$	0.3	0.5	0.1	0.1

Calculate the mean and the variance.

$$
\begin{aligned}
& E[x]=\sum_{i=1}^{4} x f(x)=0.3+2 * 0.5+3 * 0.1+4 * 0.1=2 \\
& \operatorname{var}(X)=E\left[X^{2}\right]-E[X]^{2}=\sum_{i=1}^{4} x^{2} f(x)-4 \\
& \quad=0.3+4 * 0.5+9 * 0.1+16 * 0.1-4=4.8-4=0.8
\end{aligned}
$$

(2) [2Pts] A job applicant to a company is required to submit one, two, three, four, or five forms depending on the nature of the job. Let X to denote the number of forms required of an applicant. The probability that x forms are required is known to be proportional to x, that is,

$$
p(x)=k x, \text { for } x=1,2,3 .
$$

Calculate the value k so that $p(x)$ is a probability mass function.

$$
1=\sum_{x=1}^{3} k x=k+2 k+3 k=6 k
$$

Thus, $k=\frac{1}{6}$

