Quiz \#5

Please, show your work and write legibly. Recall the following R commands:
dpois(x, lambda): $P(X=x)$ for $X \sim \operatorname{Poisson}(\lambda)$
ppois(q, lambda): $P(X \leq q)$ for $X \sim \operatorname{Poisson}(\lambda)$
(1)[4 Pts] A delivery company found that the number of complaints was 12 per years on average. Assuming that the number of complaints follows a Poisson distribution, calculate the probability of having
(a) at most 8 complaints in all of next year;
(b) 8 complaints or more in all of next year.

Let $X \sim \operatorname{pois}(12)$
(a) $P(X \leq 8)=\operatorname{ppois}(8,12)=0.1550278$.
(b) $P(X \geq 8)=1-P(X \leq 7)=1-\operatorname{ppois}(7,12)=0.9104955$.
(2) [6 Pts] Let X and Y have the following joint p.d.f.

	\mathbf{x}		
\mathbf{y}	1	2	3
1	0.10	0.15	0.15
2	0.05	0.10	0.10
3	0.10	0.20	0.05

(a) Calculate the means with respect to X and Y
(b) Are X and Y dependent or independent? Justify our answer.
(c) Are x and Y positively correlated? negatively correlated? uncorrelated? Justify your answer?
(a) By direct computation the marginal probabilities are $f_{1}(x)=(0.25,0.45,0.30)$ and $f_{2}(y)=(0.40,0.25,0.35)$
$>\mathrm{px}<-\mathrm{c}(0.25,0.45,0.30)$
$>$ py <-c(0.40, 0.25,0.35)
$>\mathrm{x}<-\mathrm{c}(1,2,3)$
$>y<-c(1,2,3)$
$>E X<-\operatorname{sum}(p x * x)$
$>$ EY <- sum (py*y)
$>$ print(EX) $=2.05$
$>\operatorname{print}(E Y)=1.95$
(b) Since $f_{1}(1) f_{2}(1) \neq f(1,1)$, the X and Y are dependent.
(c) $E[X Y]=1(0.1)+2(0.15)+3(0.15)+2(0.05)+4(0.1)+6(0.1)+3(0.1)+6(0.2)+9(0.05)=3.9$ $\sigma_{x y}=E[X Y]-\mu_{x} \mu_{y}=3.9-(1.95)(2.05)=-0.0975$. Thus, X, Y are NEGATIVELY correlated.

