$\underline{\text { QUIZ \#7 }}$

Please, write legibly and show your work. If you use R, you need to report the command you are using. Please, round your solution to 3 decimal digits.
(1)[6 Pts] Let \bar{X} be the mean of a random sample of size $n=48$ from the uniform distribution in the interval $(2,8)$. Approximate the probability $P(4.9<\bar{X}<5.5)$ using the Central Limit Theorem. You must show how you set up the probability calculation.

By the properties of the uniform distribution, $\mu=\frac{8+2}{2}=5, \sigma^{2}=\frac{(8-2)^{2}}{12}=3$
Hence $\mu_{\bar{x}}=5, \sigma_{\bar{x}}^{2}=\frac{3}{48}=\frac{1}{16}$ and $\bar{X} \sim N(\mu=5, \sigma=1 / 4)$

$$
P(4.9<\bar{X}<5.5)=\operatorname{pnorm}(5.5,5,1 / 4)-\operatorname{pnorm}(4.9,5,1 / 4)=0.977-0.3446=0.633
$$

(2)[4 Pts] Let a population be normally distributed with mean μ and standard deviation $\sigma=5$. Find the minimal sample size n such that we are 99 percent confident that the estimate of \bar{x} is within ± 1.2 unit of the true mean μ. You must show the formula you apply to find your numerical solution.

$$
\begin{aligned}
& z_{0.005}=\operatorname{qnorm}(1-0.005)=2.576 \\
& n \geq z_{0.005}^{2} \frac{\sigma^{2}}{h^{2}}=2.576^{2} \frac{5^{2}}{1.2^{2}}=115.20
\end{aligned}
$$

We choose $n=116$

