Quiz \#8

Please, show your work and write legibly. If you use R, you must report the R command you are using with all relevant parameters. Please, round your results to 1 DECIMAL DIGIT
(1) [10 Pts] Here are the SAT scores of $n=13$ mathematics SAT test scores:

$$
665,671,667,650,645,659,632,679,632,665,629,677,661
$$

(a) [2 Pts] Use the R command mean to compute the sample mean of the the SAT scores.
(b) [2 Pts Use the R command var compute the sample variance of the SAT scores.
(c) $[3 \mathrm{Pts}]$ Assuming that the scores are normally distributed, find a 99 percent confidence interval for the population mean μ.
(d) $[3 \mathrm{Pts}]$ Assuming that the scores are normally distributed and that the variance $\sigma^{2}=$ 324 is known, find the sample size n so that we are 99% confident that the estimate of \bar{x} is within ± 10 unit of the true mean
(a) $>\mathrm{x}=\mathrm{c}(665,671,667,650,645,659,632,679,632,665,629,677,661)$ $>\operatorname{mean}(x)=656.3$
(b) $>\operatorname{var}(x)=295.7$
> sqrt(var(x)) = 17.2
(c) Here $\alpha=0.01$; Hence $t_{\alpha / 2,12}=t_{0.005,12}=q t(0.995,12)=3.055$

We use formula

$$
\left[\bar{X}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \bar{X}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right]
$$

Hence

$$
\left[656.3-3.055 \frac{17.2}{\sqrt{13}}, 656.3+3.055 \frac{17.2}{\sqrt{13}}\right]=[641.7,670.9]
$$

(d) For $\alpha=0.01$, then $z_{\alpha / 2}=\operatorname{qnorm}(0.995)=2.576$

$$
n \geq\left(\frac{z_{\alpha / 2} \sigma}{h}\right)^{2}=\left(\frac{(2.576)(18)}{10}\right)^{2}=21.5 \Rightarrow n=22
$$

