Test \#2

Please, write clearly and justify all your steps, to get proper credit for your work. This is an open-book, no-calculator test. You are supposed to use the tables from the back of the book.
(1) [4 Pts] Flaws in a certain drapery material appear on the average of one in 200 square feet. If we assume that flaws can be modeled using the Poisson distribution, find:
(a) the probability of having at most one flaw in 300 square feet of material;
(b) the probability of having no flaws in 300 square feet of material.
(2)[6 Pts] Electric switches are shipped in packages of 12 items. The probability that an item is defective is 0.15 . What is the probability that one package contains:
(a) at least one defective switch;
(b) more than one defective switch.
(c) If the shipper decides to compensate the buyer for the defective switches by paying $\$ 2$ for each defective switch, what is the expected compensation amount for each package of 12 items?
(3)[4 Pts] In a box containing 1000 light bulbs, 50 are defective. A sample of size 10 is taken at random and without replacement.
(a) Set up and expression to compute the probability that there are at least 2 defective bulbs in the sample.
(b) Use the binomial distribution to compute an approximation of the probability in part (i).
(4) [8 Pts$]$ Let the joint p.d.f. of X and Y, denoted by $f(x, y)$, be given by

	\mathbf{x}			
\mathbf{y}	1	2		
1	0.3	0.1		
2	0.2	0.4		

(a) Calculate the marginal densities. Are X and Y are independent?
(b) Compute the means and variances.
(c) Set up the computation of the correlation coefficient. Are X and Y positively correlated? negatively correlated? uncorrelated?

