Test \#2

(1) [6 Pts] An experimental medication was given to patients with a certain medical condition. Suppose that the probability that a patient with the underlying condition will experience severe side effects if given that medication is 8.5%. What is the probability that, of 35 randomly chosen such patients,
(a) more than 3 will experience severe side effects?
(b) exactly 3 will experience severe side effects?
(c) How many of the 35 patients do you expect will experience severe side effects?

Number of patients with severe side effects: $X \sim \operatorname{bin}(n=35, p=0.085)$
(a) $P(X>3)=1-P(X \leq 3)=>1-\operatorname{pbinom}(3,35,0.085)=0.347$
(b) $P(X=3)=\operatorname{dbinom}(3,35,0.085)=0.234$
(c) $E(X)=35 * 0.085=2.975$
(2)[8 Pts] Let X and Y have the following joint p.d.f.
x

\mathbf{y}	1	2
1	0.14	0.32
2	0.39	0.15

(a) Calculate the marginal densities. Are X and Y are independent?
(b) Compute the means and variances.
(c) Are X and Y positively correlated? negatively correlated? uncorrelated?
(d) Let $Z=1-X+2 Y$. Find the mean and the variance of Z.
(a) > p <- matrix (c (.14, .39,.32,.15) , ncol=2)
> px <- apply(p,2,sum)
[1] 0.530 .47
> py <- apply(p,1,sum)
[1] 0.460 .54
That is: $f_{1}(x)=(0.53,0.47)$ and $f_{2}(y)=(0.46,0.54)$
X, Y not independent since $f(1,1)=0.14 \neq f_{1}(1) * f_{2}(1)=0.53 * 0.46=0.244$
(b-c) >x <-c(1,2)
$>y<-c(1,2)$
$>E X=\operatorname{sum}(p x * x)=1.47$
> EY = sum(py*y) =1.54
$>\operatorname{Var} X=\operatorname{sum}(p x * x * x)-E X * E X=0.249$
$>\operatorname{VarY}=\operatorname{sum}(p y * y * y)-E Y * E Y=0.248$
$>\mathrm{A}=0$
$>$ for $(i$ in 1:2)for $(j$ in 1:2)A <- A+p[i,j]*x[i]*y[j]
$>$ EXY<-A
$>$ EXY $=2.16$
> COVXY = EXY-EX*EY = -0.104
Hence: $\mu_{X}=1.47, \mu_{Y}=1.54, \sigma_{X}^{2}=0.249, \sigma_{Y}^{2}=0.248, \sigma_{X Y}=-0.104$ X and Y are negatively correlated.
(d) $\mu_{Z}=E[Z]=1-E[X]+2 E[Y]=1-1.47+2 * 1.54=2.61$ $\operatorname{var}(Z)=\operatorname{var}(X)+4 \operatorname{var}(Y)-4 \operatorname{cov}(X, Y)=0.249+4 * 0.248+4 * 0.104=1.657$
(3) [6 Pts] Let X be a normal random variable with mean $\mu=9$ and standard deviation $\sigma=4$.
(i) Calculate the probability $P(X>11.5)$
(ii) Calculate the probability $P(|X-9| \leq 5)$
(iii) Find the value x_{c} such that $P\left(X>x_{c}\right)=0.8810$

$$
X \sim N(\mu=9, \sigma=4)
$$

Using R:
(i) $P(X>11.5)=1-P(X \leq 11.5)=1-\operatorname{pnorm}(11.5$, mean $=9$, sd $=4)=0.266$
(ii) $P(|X-9| \leq 5)=P(4 \leq X \leq 14)$
$=\operatorname{pnorm}(14$, mean $=9, \mathrm{sd}=4)-\operatorname{pnorm}(4$, mean $=9, \mathrm{sd}=4)=0.789$
(iii) $P\left(X>x_{c}\right)=1-P\left(X \leq x_{c}\right)=0.8810$
$\Rightarrow P\left(X \leq x_{c}\right)=1-0.8810=0.1190$
$\Rightarrow x_{c}=\operatorname{qnorm}(0.119$, mean $=9, \mathrm{sd}=4)=4.280$
(4) [4 Pts] Let \bar{X} be the mean of a random sample of size $n=75$ from an uniform distribution on the interval $-2 \leq x \leq 6$. Use the central limit theorem to approximate the probability $P(2.2<\bar{X}<2.6)$.

$$
\begin{gathered}
E[X]=\frac{a+b}{2}=2=E[\bar{X}] \\
\operatorname{var}[X]=\frac{(b-a)^{2}}{12}=\frac{16}{3} \Rightarrow \sigma_{\bar{X}}^{2}=\frac{\operatorname{var}[X]}{n}=\frac{16}{225} \quad \Rightarrow \sigma_{\bar{X}}=\frac{4}{15}
\end{gathered}
$$

$P(2.2<\bar{X}<2.6)=\operatorname{pnorm}(2.6$, mean $=2, s d=4 / 15)-\operatorname{pnorm}(2.2$, mean $=2, s d=4 / 15)=0.214$
(5) [6 Pts] let X be a continuous random variable with pdf $f(x)=6 x(1-x)$ for $0 \leq$ $x \leq 1$.
(i) Compute the mean and variance of X.
(ii) Let \bar{X} be the mean of a random sample of size $n=50$ from the pdf given above. Compute the mean and variance of \bar{X}.
(iii) Compute the probability $P(0.45<\bar{X}<0.55)$.
(i) By direct calculation

$$
\begin{gathered}
E[X]=\int_{0}^{1} 6 x^{2}(1-x) d x=\int_{0}^{1}\left(6 x^{2}-6 x^{3}\right) d x=\frac{6}{3}-\frac{6}{4}=\frac{1}{2}=0.5 \\
\operatorname{var}[X]=\int_{0}^{1} 6 x^{3}(1-x) d x-\frac{1}{4}=\int_{0}^{1}\left(6 x^{3}-6 x^{4}\right) d x-\frac{1}{4}=\frac{6}{4}-\frac{6}{5}-\frac{1}{4}=\frac{1}{20}=0.05
\end{gathered}
$$

(ii) From (i), it follows that

$$
\mu_{\bar{X}}=E[X]=\frac{1}{2}, \quad \sigma_{\bar{X}}^{2}=\frac{\operatorname{var}[X]}{n}=0.001
$$

(iii) $P(0.4<\bar{X}<0.6)=$
$\operatorname{pnorm}(0.55$, mean $=1 / 2, \operatorname{sd}=\operatorname{sqrt}(0.001))-\operatorname{pnorm}(0.45$, mean $=1 / 2, \operatorname{sd}=\operatorname{sqrt}(0.001))=0.886$

