HW \#7

Please, write clearly and justify all your steps, to get proper credit for your work. You can cite general results from the book.
(1) [5Pts] Solve the wave equation problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u
$$

with boundary condition $u(a, \theta, t)=0$ and initial condition

$$
u(r, \theta, 0)=\alpha(r) \cos 2 \theta, \quad \frac{\partial u}{\partial t}(r, \theta, 0)=0
$$

[Hint: You can use the general solution (7.7.46) from textbook. You also need to write, without solving it, the integral expression to compute the coefficients $A_{m n}, B_{m n}$.]
(2) [5Pts] Solve the wave equation problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u
$$

with boundary condition $u(a, \theta, t)=0$ and initial condition

$$
u(r, \theta, 0)=0, \quad \frac{\partial u}{\partial t}(r, \theta, 0)=\alpha(r) \sin 4 \theta
$$

[This is problem 7.7.1 from the textbook. Organize the solution similarly to problem above].
(3)[5Pts] Problem 7.7.3 (a-b)

