## HW \#1

(1) We need to estimate the average porosity of bone samples. From measurements taken on similar populations we estimated that the standard deviation is $\sigma=0.6$. What sample size $n$ is needed to estimate the true average porosity to within 0.3 with $99 \%$ confidence?
(2) The mean caffeine content $\mu$ of a certain energy drink is under examination. A measure taken on a random sample of size $n=16$ yields $\bar{x}=2.4 \mathrm{~g} / \mathrm{l}$.
(a) Assuming that the standard deviation is known to be $\sigma=0.3$, find the 95 confidence interval for $\mu$.
(b) If that the standard deviation is unknown but the sample standard deviation is $s=0.3$, find the 95 confidence interval for $\mu$.
(3) According to a manufacturer, the average time $X$ taken by a drug to be totally absorbed is 60 min . From measurements on $n=8$ randomly selected patients, we finds the following data for the absorption times (in minutes):
$X_{1}=64, X_{2}=59, X_{3}=62, X_{4}=63, X_{5}=60, X_{6}=66, X_{7}=62, X_{8}=61$.
(a) Assuming that $X$ is normally distributed, test the hypothesis that the absorption time indicated by the drug manufacturer is too low (that is, test the alternative hypothesis $\mu>60$ ), using significance level $\alpha=0.05$.
(b) Repeat the test of hypothesis with $\alpha=0.01$.
(4) Minor surgery on horses under field conditions requires a reliable short-term anesthetic producing good muscle relaxation, minimal cardiovascular and respiratory changes, and a quick, smooth recovery with minimal after effects so that horses can be left unattended. The article A Field Trial of Ketamine Anesthesia in the Horse (Equine Vet. J.,1984:176179) reports that for a sample of $n=73$ horses to which ketamine was administered under certain conditions, the sample average lateral recumbency
(lying-down) time was 18.86 min and the standard deviation was 8.6 min . Does this data suggest that true average lateral recumbency time under these conditions is less than 20 min ? Test the appropriate hypotheses at level of significance $\alpha=0.10$ and compute the $p$ value.
(5) A sample of 12 temperature readings (in Fahrenheit) were collected from a bacterial population and resulting readings were as follows:
105.6, 90.9, 91.2, 96.9, 96.5, 91.3, 100.1, 105.0, 99.6, 107.7, 103.3, 92.4.

Does this data suggest that the population mean temperature under these conditions differs from 100? State and test the appropriate hypotheses using $\alpha=0.05$.

