HW \#2

(7.3.1)

We compare rugby plater (r) vs multisport players (m)
We test $H_{0}: \mu_{r} \leq \mu_{m}$ against $H_{1}: \mu_{r}>\mu_{m}$ with $\alpha=0.01$.
Data: $n_{r}=24, \bar{x}_{r}=27.75, s_{r}=2.64 ; n_{m}=40, \bar{x}_{m}=22.41, s_{m}=1.27$.
The sample variance is $s_{p}^{2}=\frac{\left(n_{r}-1\right) s_{r}^{2}+\left(n_{m}-1\right) s_{m}^{2}}{n_{r}+n_{m}-2}=3.600$.
Test statistic (Student t pdf):

$$
t=\frac{\bar{x}_{r}-\bar{x}_{m}}{\sqrt{\frac{s_{p}^{2}}{n_{r}}+\frac{s_{p}^{2}}{n_{m}}}}=\frac{27.75-22.41}{\sqrt{\frac{3.600}{24}+\frac{3.600}{40}}}=10.90
$$

Rejection region: $t>t_{0.01 ; 63}=2.390$
Since $t>t_{0.005 ; 63}=2.390$, then H_{0} is REJECTED.
NOTE: If one assumes that σ_{r} and σ_{m} are known and uses the Normal distribution, then Rejection region: $z>z_{0.01}=2.326$ and the decision is the same.

We compare male patients with obstructive sleep apnea syndrome (o) and healthy male subjects (c).

We test $H_{0}: \mu_{o}=\mu_{c}$ against $H_{1}: \mu_{o} \neq \mu_{c}$ with $\alpha=0.01$.
Data: $n_{o}=26, \bar{x}_{o}=111.060, s_{o}^{2}=48.398 ; n_{c}=37, \bar{x}_{c}=95.854, s_{c}^{2}=$ 31.237. The sample variance is $s_{p}^{2}=\frac{\left(n_{o}-1\right) s_{o}^{2}+\left(n_{c}-1\right) s_{c}^{2}}{n_{o}+n_{c}-2}=38.270$.

Test statistic (Student t pdf):

$$
t=\frac{\bar{x}_{o}-\bar{x}_{c}}{\sqrt{\frac{s_{p}^{2}}{n_{o}}+\frac{s_{p}^{2}}{n_{c}}}}=\frac{111.060-95.854}{\sqrt{\frac{38.270}{26}+\frac{38.270}{37}}}=9.61
$$

Rejection region: $t>t_{0.005 ; 62}=2.660$ or $t<-t_{0.005 ; 62}=-2.660$
Since $t>t_{0.005 ; 63}=2.660$, then H_{0} is REJECTED.

We compare max pain intensity with metadone (m) or placebo (p). We consider the paired differences $d_{i}-p_{i}-m_{i}$

Pair t-test. We test $H_{0}: \mu_{d} \leq 0$ against $H_{1}: \mu_{d}>0$ with $\alpha=0.05$.

Data: $n=11, \bar{d}=\frac{1}{11} \sum_{i=1}^{11} d_{i}=9.618, s_{d}^{2}=102.204$.
Test statistic (Student t pdf):

$$
t=\frac{\bar{d}-\mu_{d}}{s_{\bar{d}}}=\frac{\bar{d}-\mu_{d}}{s_{d} / \sqrt{n}}=\frac{9.618}{\sqrt{\frac{102.204}{11}}}=3.155
$$

Rejection region: $t>t_{0.05 ; 10}=1.812$
Since $t>t_{0.05 ; 10}=1.812$, then $\underline{H_{0}}$ is REJECTED.
(7.5.1)

We examine proportions of gynecologists-obstetricians in the Flanders who performed at least one cesarean section

We test $H_{0}: p \geq 0.35$ against $H_{1}: p<0.35$ with $\alpha=0.05$.
Data: $n=295, x=90, \hat{p}=\frac{90}{295}=0.305$.
Test statistic (Standard Normal pdf):

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.305-0.350}{\sqrt{\frac{(0.35)(0.65)}{295}}}=-1.621
$$

Rejection region: $z<-z_{0.95}=-1.645$
Since $z>-z_{0.95}=-1.645$, then $\underline{H_{0}}$ is not REJECTED.
(7.6.2)

We examine rates of posttraumatic stress disorder (PTSD) in mothers (m) and fathers (f).

We test $H_{0}: p_{f} \geq p_{m}$ against $H_{1}: p_{f}<p_{m}$ with $\alpha=0.05$.
Data: $n_{f}=175, x_{f}=28, \hat{p}_{f}=0.160 ; n_{m}=180, x_{m}=43, \hat{p}_{m}=0.239$;
Test statistic (Standard Normal pdf):

$$
z=\frac{\hat{p}_{f}-\hat{p}_{m}}{\hat{\sigma}_{\hat{p}_{f}-\hat{p}_{m}}}
$$

where

$$
\bar{p}=\frac{x_{n}+x_{f}}{n_{m}+n_{f}}=\frac{71}{355}=0.200 ; \hat{\sigma}_{\hat{p}_{f}-\hat{p}_{m}}=\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{f}}+\frac{\bar{p}(1-\bar{p})}{n_{m}}}=0.042
$$

Hence $z=(0.160-0.239) / 0.042=-1.667$
Rejection region: $z<-z_{0.95}=-1.645$
Since $z<-z_{0.95}=-1.645$, then H_{0} is REJECTED.

Quiz \#2

(1) Subjects in a Body Mass Index (BMI) study included a sample of 7 male soccer players and a sample of 8 male rugby players whose measured BMI was

Soccer players: 23.5,22.8, 23.2,23.6,22.9, 23.1,23.6
Rugby players: 24.1, 23.8, 24.6, 23.9, 24.9, 24.3, 24.1, 23.6
Assume each population sample is normally distributed Is there sufficient evidence for one to claim that, in general, soccer players have a different BMI than rugby players? Assume that the unknown variances are the same and set $\alpha=0.01$.

Let μ_{s} and μ_{r} be the means of the BMI distribution of soccer and rugby players respectively

We test $H_{0}: \mu_{r}=\mu_{s}$ against $H_{1}: \mu_{r} \neq \mu_{s}$ with $\alpha=0.01$.
Using R:
$>x<-c(23.5,22.8,23.2,23.6,22.9,23.1,23.6)$
$>\mathrm{y}<-c(24.1,23.8,24.6,23.9,24.9,24.3,24.1,23.6)$
> t.test (x,y,alternative = "two.sided", paired = FALSE, var.equal $=$ TRUE)

Two Sample t-test
data: x and y
$\mathrm{t}=-4.6047, \mathrm{df}=13, \mathrm{p}$-value $=0.0004935$
alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:
$-1.351111-0.488175$
sample estimates:
mean of x mean of y
23.2428624 .16250

Since $p-$ value $=0.0004935<0.001$, then $\underline{H_{0}}$ is REJECTED.
(2) A study compares the rates of posttraumatic stress disorder (PTSD) in mothers (m) and fathers (f). In this study, 28 out of 175 fathers and

43 out of 180 mothers were found to meet the criteria for PTSD. Is there enough evidence to conclude that fathers are less likely to develop PTSD than mothers. Use $\alpha=0.01$ and compute the p-value of the hypothesis testing problem.

We test $H_{0}: p_{f} \geq p_{m}$ against $H_{1}: p_{f}<p_{m}$ with $\alpha=0.05$.
Data: $n_{f}=175, x_{f}=28, \hat{p}_{f}=0.160 ; n_{m}=180, x_{m}=43, \hat{p}_{m}=0.239$;
Test statistic (Standard Normal pdf):

$$
z=\frac{\hat{p}_{f}-\hat{p}_{m}}{\hat{\sigma}_{\hat{p}_{f}-\hat{p}_{m}}}
$$

where

$$
\bar{p}=\frac{x_{n}+x_{f}}{n_{m}+n_{f}}=\frac{71}{355}=0.200 ; \hat{\sigma}_{\hat{p}_{f}-\hat{p}_{m}}=\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{f}}+\frac{\bar{p}(1-\bar{p})}{n_{m}}}=0.042
$$

Hence $z=(0.160-0.239) / 0.042=-1.667$
Rejection region: $z<-z_{0.99}=-2.326$
Since $z>-z_{0.99}=-1.645$, then H_{0} is not REJECTED.
p -value $=\operatorname{pnorm}(-1.667)=0.0477572$
R solution
> prop.test $(\mathrm{x}=\mathrm{c}(28,43), \mathrm{n}=\mathrm{c}(175,180)$, alternative $=$ "less", conf.level $=0.95$, correct $=$ TRUE)

2-sample test for equality of proportions with continuity correction data: $\mathrm{c}(28,43)$ out of $\mathrm{c}(175,180)$
X-squared $=2.9759, \mathrm{df}=1, \mathrm{p}$-value $=0.04226$
$>$ prop.test $(\mathrm{x}=\mathrm{c}(28,43), \mathrm{n}=\mathrm{c}(175,180)$, alternative $=$ "less", conf.level $=0.95$, correct
$=$ FALSE)
2-sample test for equality of proportions with continuity correction data: $c(28,43)$ out of $c(175,180)$ X -squared $=3.4514, \mathrm{df}=1, \mathrm{p}$-value $=0.0316$

