HW \# 9 - SOLUTIONS

Ex 13.4.1

```
> x <-c(63,68,79,65,64,63,65,64,76,74,66,66,67,73,69,76)
> wilcox.test(x,mu=70,alternative="less")
    Wilcoxon signed rank test with continuity correction
data: x
V = 48.5, p-value = 0.1622
alternative hypothesis: true location is less than 70
Since p-value is larger than 0.05, we accept the null hypothesis that the
mean weight gain is not less than 70 grams
```


Ex 13.4.2

```
>x <-c(214,362,202,158,403,219,307,331)
>y<-c(232,276,224,412,562,203,340,313)
> wilcox.test(x,y,alternative="less",pair=TRUE)
    Wilcoxon signed rank test with continuity correction
data: x and y
V = 9.5, p-value = 0.131
alternative hypothesis: true location shift is less than 0
Since p-value is larger than 0.05, we accept the null hypothesis that
cortisol does not increase after a singing lesson.
```

Here is the paired t-test on the same data

```
> t.test(x,y,alternative="less",pair=TRUE)
    Paired t-test
data: x and Y
t = -1.1889, df = 7, p-value = 0.1366
alternative hypothesis: true mean difference is less than 0
95 percent confidence interval:
    -Inf 27.1559
sample estimates:
mean difference
    -45.75
```


Ex 13.5.1

```
> x <-c(99,85,73,98,83,88,99,80,74,91,80,94,94,98,80)
>y<-c(78,74,69,79,57,78,79,68,59,91,89,55,60,55,79)
> library(nonpar)
> mediantest(x = x, y = y, exact=TRUE)
    Exact Median Test
    HO: The 2 population medians are equal.
```

HA: The 2 population medians are not equal.

Significance Level $=0.05$
The p-value is 0.000142150287085559
Since the p-value is below 0.05, there is enough evidence to conclude that the population medians are different at a significance level of 0.05 .

Ex 13.6.1

```
> hw1361 <- read.csv("C:/Users/dlabate/Desktop/Teaching/ma4310/EXR_C13_S06_01
.csv")
> hw1361$GROUP = factor(hw1361$GROUP)
> wilcox.test(WEIGHT ~ GROUP, alternative = "two.sided", data=hw1361)
    Wilcoxon rank sum test with continuity correction
data: WEIGHT by GROUP
W = 712.5, p-value = 0.2398
alternative hypothesis: true location shift is not equal to 0
Since the p-value is larger than 0.05, there is not sufficient evidence to
reject the null hypothesis. Hence, there is no significant difference in weig
ht between the two groups.
REMARK. Here is the result of the t-test, for comparison
> t.test(WEIGHT ~ GROUP, alternative = "two.sided", data=hw1361)
    Welch Two Sample t-test
data: WEIGHT by GROUP
t = 0.94956, df = 67.975, p-value = 0.3457
alternative hypothesis: true difference in means between group 1 and group 2
is not equal to 0
95 percent confidence interval:
    -12.02989 33.87302
sample estimates:
mean in group 1 mean in group 2
            223.8333 212.9118
```

Also in this case, since the p-value is larger than 0.05 , there is not s
ufficient evidence to reject the null hypothesis.

Ex 11.8.1

```
> hw1381 <- read.csv("C:/Users/dlabate/Desktop/Teaching/ma4310/EXR_C13_S08_01
.csv")
> hw1381$GROUP = factor(hw1381$GROUP)
> kruskal.test(B12 ~ GROUP, data=hw1381)
```

```
        Kruskal-Wallis rank sum test
data: B12 by GROUP
Kruskal-Wallis chi-squared = 11.381, df = 2, p-value = 0.003378
Since the p-value is less than 0.05, the populations are statistically differ
ent.
We now apply the post-hoc Dunn test
> library(FSA)
> dunnTest(B12 ~ GROUP, data=hw1381,method="bh")
Dunn (1964) Kruskal-Wallis multiple comparison
    p-values adjusted with the Benjamini-Hochberg method.
    Comparison Z P.unadj P.adj
1 1 - 2 0.6343984 0.525820862 0.525820862
2 1 - 3 2.9404083 0.003277800 0.009833399
3 2 - 3 2.7463942 0.006025432 0.009038147
```

The post-hoc test shows that there is a statistically significant difference between the classes 1-3 and 2-3
Remark: This is the ANOVA test on the same data

```
> anova <- aov(B12 ~ GROUP,data = hw1381)
> summary(anova)
\begin{tabular}{lrrrrr} 
& Df & Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
GRoUP & 2 & 119664 & 59832 & 0.64 & 0.528 \\
Residuals & 229 & 21394206 & 93424 & &
\end{tabular}
```


Ex 13.11.1

```
> x <-c(163, 164, 156, 151, 152, 167, 165, 153, 155)
> y <-c (53.9, 57.4, 41.0, 40.0, 42.0, 64.4, 59.1, 49.9, 43.2)
> library(mblm)
> model.k = mblm(y ~ x)
> summary(model.k)
Call:
mblm(formula = y ~ x)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-5.7569 & -2.2055 & 0.0000 & 0.6486 & 7.1973
\end{tabular}
Coefficients:
            Estimate MAD V value Pr(>|V|)
(Intercept) -164.0574 
Residual standard error: 3.843 on 7 degrees of freedom
> model = lm(y ~ x)
```

```
> summary(model)
Call:
lm(formula = y ~ x)
Residuals:
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -159.8417 34.4437 -4.641 0.002368 **
x 1.3250 0.2172 6.099 0.000491 ***
Residual standard error: 3.839 on 7 degrees of freedom
Multiple R-squared: 0.8416, Adjusted R-squared: 0.819
F-statistic: 37.2 on 1 and 7 DF, p-value: 0.0004914
```


Conclusion:

The Kendall-Theil regression line is: $y=-164.0574+1.3514 x$
The least squares regression line is: $y=-159.8417+1.3250 x$

Quiz \#9

Please, write clearly and justify your work to receive credit. You need to report the R command you entered with the complete list of parameters. You also need to report the R output that you used to draw your conclusions.

1) A randomly selected group of singers were the subjects of a study about the possible beneficial effects of singing on well-being during a single singing lesson. The data below report the cortisol level ($\mathrm{nmol} / \mathrm{L}$) before and after the singing lesson. Use an appropriate non-parametric method to test the hypothesis that cortisol increases after a singing lesson. State the hypothesis testing problem and solve it using $\alpha=0.05$.

Before:	214	301	221	197	198	205	188	321
After:	232	341	275	205	197	210	188	334

Solution. Let μ_{b} be the average cortisol level before and μ_{a} be the average cortisol level after.
We test the hypothesis $H_{0}: \mu_{b} \geq \mu_{a}$ vs. $H_{1}: \mu_{b}<\mu_{a}$
Data are paired. We apply the Wilcoxon paired signed-rank test.
> before <-c (214, 301, 221, 197, 198, 205, 188, 321)
$>$ after <-c (232, 341, 275, 205, 197, 210, 188, 334)
> wilcox.test(before, after, alternative="less", pair=TRUE)
Wilcoxon signed rank test with continuity correction
data: before and after
$\mathrm{V}=1$, p-value $=0.01731$
alternative hypothesis: true location shift is less than 0
Since p-value is less than 0.05 , we accept the alternative hypothesis that cortisol increases after a singing lesson.
2) A randomly selected group amateur male singers (Group 1) and a randomly selected group amateur female singers (Group 2) are the subject of a study on cortisol level of male vs female singers. Data below report the cortisol levels measures in group 1 and group 2. Use an appropriate non-parametric method to test the hypothesis that cortisol level is different in the two groups. State the hypothesis testing problem and solve it using $\alpha=0.05$.

$$
\begin{array}{lllllllll}
\text { Group 1: } & 214 & 301 & 221 & 197 & 198 & 205 & 188 & 321 \\
\text { Group 2: } & 314 & 205 & 275 & 197 & 232 & 332 & 341 & 339
\end{array}
$$

Solution. Let μ_{1} be the average cortisol level in Group 1 and μ_{2} be the average cortisol level in Group 2

We test the hypothesis $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{1}: \mu_{1} \neq \mu_{2}$
Data are independent. We apply the two-sample Mann-Whitney U test.
> group1 <-c (214, 301, 221, 197, 198, 205, 188, 321)
> group2 <-c (314, 205, 275, 197, 232, 332, 341, 339)
> wilcox.test(group1,group2,alternative="two.sided",pair=FALSE)
Wilcoxon rank sum test with continuity correction
data: group1 and group2
$\mathrm{W}=16, \mathrm{p}$-value $=0.1031$
alternative hypothesis: true location shift is not equal to 0
Since p-value is greater than 0.05 , we accept the null hypothesis that cortisol level is the same in male and female amateur singers.

Remark: Comparison with parametric tests

1) Paired t.test
> t.test(before, after, alternative="less", pair=TRUE)
Paired t-test
data: before and after
$\mathrm{t}=-2.4425, \mathrm{df}=7, \mathrm{p}$-value $=0.0223$
Also in this case, we reject the null hypothesis at significance level 0.05
2) t.test
> t.test(group1,group2, alternative="two.sided", pair=FALSE)
Welch Two Sample t-test data: group1 and group2
$\mathrm{t}=-1.738, \mathrm{df}=13.58, \mathrm{p}$-value $=0.1048$
Also in this case, we accept the null hypothesis at significance level 0.05
