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wder properties described in the preceding sections, but we have seen that /2 cannot be
wpresented as a rational number; therefore +/2 does not belong to @. This observation
shows the necessity of an additional property to characterize the real number system. This
siditional property, the Completeness (or the Supremum) Property, is an essential property
of R, and we will say that R is a complete ordered field. It is this special property that
permits us to define and develop the various limiting procedures that will be discussed in
e chapters that follow.

There are several different ways to describe the Completeness Property. We choose to
zive what is probably the most efficient approach by assuming that each nonempty bounded
subset of R has a supremum.

Suprema and Infima

We now introduce the notions of upper bound and lower bound for a set of real numbers.
These ideas will be of utmost importance in later sections.

2.3.1 Definition Let S be a nonempty subset of R.

{a) The set S is said to be bounded above if there exists a number # € IR such that s < u
for all s € S. Each such number u is called an upper bound of S.

(b) The set S is said to be bounded below if there exists a number w € R such thatw < s
for all s € S. Each such number w is called a lower bound of S.

(c) A setis said to be bounded if it is both bounded above and bounded below. A set is
said to be unbounded if it is not bounded.

For example, the set S := {x € R : x < 2} is bounded above; the number 2 and any
number larger than 2 is an upper bound of S. This set has no lower bounds, so that the set
is not bounded below. Thus it is unbounded (even though it is bounded above).

If a set has one upper bound; then it has infinitely many upper bounds, because if u
is an upper bound of S, then the numbers u + 1, u + 2, - -+ are also upper bounds of §.
(A similar observation is valid for lower bounds.)

In the set of upper bounds of § and the set of lower bounds of §, we single out their
least and greatest elements, respectively, for special attention in the following definition.
(See Figure 2.3.1.)

M

inf § m sup §
\ e

Ao
N
lower bounds of § upper bounds of §

Figure 2.3.1 infS and sup§

2.3.2 Definition Let S be a nonempty subset of R.

(a) If S is bounded above, then a number « is said to be a supremum (or a least upper
bound) of § if it satisfies the conditions:

(1) u is an upper bound of §, and
(2) if vis any upper bound of S, then u < v.
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(b) If S is bounded below, then a number w is said to be an infimum (or a greatest lower
bound) of S if it satisfies the conditions:

(1) wis a lower bound of S, and
(2) ift is any lower bound of S, then < w.

It is not difficult to see that there can be only one supremum of a given subset S of R.
(Then we can refer to the supremum of a set instead of @ supremum.) For, suppose that
u, and u, are both suprema of §. If u;, < u,, then the hypothesis that u, is a supremum
implies that u, cannot be an upper bound of S. Similarly, we see that u, < u, is not
possible. Therefore, we must have u; = u,. A similar argument can be given to show that

the infimum of a set is uniquely determined.
If the supremum or the infimum of a set S exists, we will denote them by

supS and infS.

We also observe that if ' is an arbitrary upper bound of a nonempty set S, then sup S<u.
This is because sup S is the least of the upper bounds of §.

First of all, it needs to be emphasized that in order for a nonempty set S in R to have -
a supremum, it must have an upper bound. Thus, not every subset of R has a supremum;

similarly, not every subset of R has an infimum. Indeed, there are four possibilities for a -

nonempty subset S of R: it can 5

(i) have both a supremum and an infimum, .

(ii)  have a supremum but no infimum, 1

(iii)  have a infimum but no supremum, B

(iv)  have neither a supremum nor an infimum. I

We also wish to stress that in order to show that # = sup S for some nonempty subset E

of R, we need to show that both (1) and (2) of Definition 2.3.2(a) hold. It will be instructive T

to reformulate these statements. First the reader should see that the following two statements L

about a number u and a set S are equivalent: K

(1)  u is an upper bound of S, &

(1Y s<uforalls e S. -
Also, the following statements about an upper bound u of a set § are equivalent:

(2) if v is any upper bound of §, thenu < v, b

(2)  if z < u, then z is not an upper bound of S, x

(2")  if z < u, then there exists s, € S such that z < s, -

-

2"y if & > 0, then there exists s, € S such thatu —e <.

Therefore, we can state two alternate formulations for the supremum.

233 Lemma A number u is the supremum of a nonempty subset S of R if and only if
u satisfies the conditions:

(1) s <uforalls e S,
(2) ifv < u, then there exists s’ € S such thatv < s

We leave it to the reader to write out the details of the proof.

2.3.4 Lemma An upper bound u of a nonempty set S in R is the supremum of § if and
only if for every £ > 0 there exists an s, € § such thatu — & < s,.
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Proof.  If u is an upper bound of S that satisfies the stated condition and if y < u, then we
pute :=u —v. Then ¢ > 0, so there exists s, €Ssuchthaty =y — ¢ < s, Therefore, v
is not an upper bound of S, and we conclude that u = sup S.

Conversely, suppose that i = sup S andlete > 0. Since y — & < u, then u — ¢ is not
an upper bound of . Therefore, some element S, of § must be greater than u — ¢: that is,

U —¢& <s,. (See Figure 2.3.2.) QED.
u—¢€ *'In u
Y ¥/
L. i IR
s

Figure 232 wu=sups

It is important to realize that the supremum of a set may or may not be an element
of the set. Sometimes it is and sometimes it is not, depending on the particular set. We
consider a few examples.

2.3.5 Examples (a) Ifa nonempty set S, has a finite number of elements, then it can
be shown that S, has a largest element u and a least element w. Then u = sup §; and
w = inf S, , and they are both members of S, . (This is clear if $, has only one element, and
it can be proved by induction on the number of elements in §,; see Exercises 11 and 12.)
(b) The set S, ={x:0<x<1)} clearly has 1 for an upper bound. We prove that 1 is
its supremum as follows. If v < 1, there exists an element s” € S, such that v < . (Name
one such element 5’.) Therefore v is not an upper bound of S, and, since v is an arbitrary
number v < 1, we conclude that sup S, = 1. It is similarly shown that inf §, = 0. Note that
both the supremum and the infimum of S, are contained in S,.

(¢) The set S:={x:0<x <1} clearly has 1 for an upper bound. Using the same
argument as given in (b), we see that sup §; = 1. In this case, the set S, does not contain
its supremum. Similarly, inf .S‘3 = 0 is not contained in ;. O

The Completeness Property of R

It is not possible to prove on the basis of the field and order properties of R that were
discussed in Section 2.1 that every nonempty subset of R that is bounded above has a
supremum in R. However, it is a deep and fundamental property of the real number system
that this is indeed the case. We will make frequent and essential use of this property,
especially in our discussion of limiting processes. The following statement concerning the
existence of suprema is our final assumption about R. Thus, we say that R is a complete
ordered field.

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has
an upper bound also has a supremum in R.

This property is also called the Supremum Property of R. The analogous property
for infima can be deduced from the Completeness Property as follows. Suppose that S is
a nonempty subset of R that is bounded below. Then the nonempty set § := {—s:s5 e § }
is bounded above, and the Supremum Property implies that u :— sup § exists in R. The
reader should verify in detail that —u is the infimum of S,
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Exercises for Section 2.3

13;
14.
15.

Let S, := {x € R: x = 0}. Show in detail that the set S, has lower bounds, but no upper bounds.
Show that inf §, = 0.

Let S, = {x e R: x > 0}. Does S, have lower bounds? Does S, have upper bounds? Does
inf §, exist? Does sup S, exist? Prove your statements.

Let §; = {1/n : n € N}. Show that sup S, =1 and inf §; = 0. (It will follow from the Archi-
medean Property in Section 2.4 that inf §; = 0.)

Let S, := {1 —=(=1)"/n:n € N}. Find inf §, and sup 5.

Let S be a nonempty subset of R that is bounded below. Prove that inf § = — sup{—s: s € §}.

If a set S € IR contains one of its upper bounds, show that this upper bound is the supremum of
S.

Let S € R be nonempty. Show that u € R is an upper bound of § if and only if the conditions
t e Randt > u imply thatt ¢ S.

Let S € R be nonempty. Show that if u = sup S, then for every number n € N the number
u — 1/n is not an upper bound of S, but the number u + 1/n is an upper bound of S. (The
converse is also true; see Exercise 2.4.3.)

Show that if A and B are bounded subsets of R, then AU B is a bounded set. Show that
sup(A U B) = sup{sup A, sup B}.

Let S be a bounded set in R and let S, be a nonempty subset of §. Show that inf § < inf §, <
sup S, < sup .

Let $ C IR and suppose that s* := sup S belongs to S. If u ¢ S, show that sup(S U {u}) =
sup{s™, u}.

Show that 2 nonempty finite set § € R contains its supremum. [Hint: Use Mathematical Induc-
tion and the preceding exercise.]

Show that the assertions (1) and (1) before Lemma 2.3.3 are equivalent.

Show that the assertions (2), (2), (2”), and (2") before Lemma 2.3.3 are equivalent.

Write out the details of the proof of Lemma 2.3.3.

Section 2.4 Applications of the Supremum Property

We will now discuss how to work with suprema and infima. We will also give some very
important applications of these concepts to derive fundamental properties of R. We begin
with examples that illustrate useful techniques in applying the ideas of supremum and
infimum.

2.4.1 Example (a) Itisanimportant fact that taking suprema and infima of sets is com-
patible with the algebraic properties of R. As an example, we present here the compatibility
of taking suprema and addition.

Let S be a nonempty subset of R that is bounded above, and let a be any number in

R. Define the seta + S := {a + s : s € S§}. We will prove that

sup(a + S) = a +sup S.

B Y T ETE
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If weletu :=sup S, thenx < uforallx € §,sothata + x < a + u. Therefore,a + u
: an upper bound for the set a + §; consequently, we have sup(a + §) < a + u.

Now if v is any upper bound of the set a + S, then a + x < v for all x € S. Con-
sequently x < v —a for all x € S, so that v —a is an upper bound of S. Therefore,
¢ =supS < v —a, which gives us a +u < v. Since v is any upper bound of a + §,
~e can replace v by sup(a + §) to geta + u < sup(a + S).

Combining these inequalities, we conclude that

sup(a+ S) =a+u=a-+supS.

For similar relationships between the suprema and infima of sets and the operations of
addition and multiplication, see the exercises.

(b) If the suprema or infima of two sets are involved, it is often necessary to establish
results in two stages, working with one set at a time. Here is an example.
Suppose that A and B are nonempty subsets of R that satisfy the property:

a<b foralla € Aandall b € B.
We will prove that
sup A < inf B,

For, givenb € B, wehavea < bforalla € A. This means that b is an upper bound of A, so
that sup A < b. Next, since the last inequality holds for all b € B, we see that the number
sup A is a lower bound for the set B. Therefore, we conclude that sup A < inf B. O

Functions

The idea of upper bound and lower bound is applied to functions by considering the
range of a function. Given a function f : D — IR, we say that f is bounded above if
the set f(D) = {f(x) : x € D} is bounded above in R; that is, there exists B € R such
that f(x) < B for all x € D. Similarly, the function f is bounded below if the set f(D)
is bounded below. We say that f is bounded if it is bounded above and below; this is
equivalent to saying that there exists B € R such that | f(x)| < B forall x € D.

The following example illustrates how to work with suprema and infima of functions.

2.4.2 Example Suppose that f and g are real-valued functions with common domain
D C R. We assume that f and g are bounded.

(a) If f(x) < g(x)forallx € D,thensup f(D) < sup g(D), which is sometimes written:

sup f(x) < sup g(x).
xeD xeD
We first note that f(x) < g(x) < sup g(D), which implies that the number sup g(D)
is an upper bound for f (D). Therefore, sup (D) < sup g(D).

(b) We note that the hypothesis f(x) <'g(x) for all x € D in part (a) does not imply any
relation between sup f (D) and inf g(D).

For example, if f(x) := x? and g(x) := x with D = {x : 0 < x < 1}, then fx) <
g(x)forallx € D.However, we see thatsup f (D) = 1 andinf g(D) = 0. Since sup g(D) =
1, the conclusion of (a) holds.
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(© If f(x) <g(y forallx,ye D, then we may conclude that sup f(D) < inf g(D),
which we may write as:

sup f(x) < inf g(y)-
xeD yeD

(Note that the functions in (b) do not satisfy this hypothesis.)
The proof proceeds in two stages as in Example 2.4.1(b). The reader should write out

the details of the argument. |

Further relationships between suprema and infima of functions are given in the exer-

cises.

The Archimedean Property
R and the customary picture of the real line, it may
bounded in R. How can we prove this
ly the Algebraic and Order Properties
ss Property of R as well as the

Because of your familiarity with the set
seem obvious that the set N of natural numbers is not
“obvious” fact? In fact, we cannot do so by using on
given in Section 2.1. Indeed, we must use the Completene
Inductive Property of N (that is, if n € N, thenn + 1 € N).

The absence of upper bounds for N means that given any real number x there exists a

natural number n (depending on x) such that x < n.

2.4.3 Archimedean Property If x € R, then there exists n, € N such that x < n,.

Proof. If the assertion is false, thenn < x forall n € N; therefore, x is an upper bound of

N. Therefore, by the Completeness Property, the nonempty set N has a supremum u € R.
Subtracting 1 from u gives a number u — 1 which is smaller than the supremum « of N.
Therefore u — 1 is not an upper bound of N, so there exists m € N withu — 1 < m. Adding
1 gives u < m + 1, and since m + 1 e N, this inequality contradicts the fact that u is an

QED.

upper bound of N.

2.4.4 Corollary IfS:={l/n:ne€ N}, then inf § = 0.

Proof. Since S # @ is bounded below by 0, it has an infimum and we let w :=inf S. Itis
clear that w > 0. For any & > 0, the Archimedean Property implies that there exists n € N

such that 1/& < n, which implies 1/n < &. Therefore we have
O<w<=l/n<e

But since & > 0 is arbitrary, it follows from Theorem 2.1.9 thatw = 0. QED.

2.4.5 Corollary Ift > 0, there existsn, € N such that0 < 1/n, <.

—0 and ¢ > 0, then f is not a lower bound for the set

Proof. Since inf{1/n:n € N}
QED.

{1/n : n € N}. Thus there existsn, € N such that0 < 1/n, <.

2.4.6 Corollary Ify > 0, there existsn, € N such that n, — 1<y<n,
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Proof. The Archimedean Property ensures that the subset E y ={meN:y<m}of N
is not empty. By the Well-Ordering Property 1.2.1, E , has aleast ele

ment, which we denote
by n.,. Then n, — 1 does not belong to E, and hence we have n,

-l=<sy< n,. QED.

Collectively, the Corollaries 2.4.4-2.4.6 are sometimes referred to as the Archimedean
Property of R.

The Existence of /2

The importance of the Supremum Property lies in the fact that it guarantees the existence of
real numbers under certain hypotheses. We shall make use of it in this way many times, At
the moment, we shall illustrate this use by proving the existence of a positive real number
x such that x? = 2; that is, the positive square root of 2. It was shown earlier (see Theorem

2.1.4) that such an x cannot be a rational number; thus, we will be deriving the existence
of at least one irrational number.

2.4.7 Theorem There exists a positive real number x such that x> = 2.

Proof. let §:= fseR:0<ys, 5% < 2}. Since 1 € S, the set
bounded above by 2, because if t > 2, then 2 > 4 so thatr ¢ §.

Property implies that the set § has a supremum in R, and we
G e 18

is not empty. Also, S is
Therefore the Supremum
let x := sup S. Note that

We will prove that x* = 2 by ruling out the other two possibilities: x> < 2 and x2 > 2.
First assume that x* < 2. We will show that this assumption contradicts the fact that
X = sup § by finding an n € N such that x +1/n € S, thus implying that x is not an upper
bound for S. To see how to choose n, note that 1/n* < 1/n so that
i 5.0 1 5 1
x4+ - =Xt —+ 5 =x+—(2x+1).
n n n n
Hence if we can choose 7 so that
1
—-2x+1) <2—x2,
n

then we get (x + 1/n)? < x? + 2-x»)=2 By assumption we have 2 — x2 - 0, so that

2-xH/02x + 1) > 0. Hence the Archimedean Property (Corollary 2.4.5) can be used to
obtain n € N such that

1 2-x?
n 2x+1°
These steps can be reversed to show that for this choice of n we have x + 1/n € S, which
contradicts the fact that x is an upper bound of S. Therefore we cannot have x2 < 2.
Now assume that x> > 2. We will show that it is then possible to find m e N such that

x — 1/m is also an upper bound of contradicting the fact that x = sup §. To do this, note

that
1)? 2, 1 2
( ——) =x.2-—x+—2—>x2—-—x.
m m m

Hence if we can choose m so that
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then (x — 1/m)? > x* — (x? — 2) = 2. Now by assumption we have x? —2> 0, so that
(x* — 2)/2x > 0. Hence, by the Archimedean Property, there exists m € N such that

1 x*-2

— < :
m 2x
These steps can be reversed to show that for this choice of m we have (x — 1/ m)? > 2. Now
if s € S, then s* < 2 < (x — 1/m)?, whence it follows from 2.1.13(a) that s < x — 1/m.
This implies that x — 1/m is an upper bound for S, which contradicts the fact that x = sup S.
Therefore we cannot have x* > 2.

Since the possibilities x> < 2 and x> > 2 have been excluded, we must have x* =D
QED.

By slightly modifying the preceding argument, the reader can show that if @ > 0, then
there is a unique » > 0 such that b* = a. We call b the positive square root of a and denote
it by b = /a or b = a'/>. A slightly more complicated argument involving the binomial
theorem can be formulated to establish the existence of a unique positive nth root of a,
denoted by %/a or a'/", for each n € N.

Remark If in the proof of Theorem 2.4.7 we replace the set § by the set of rational
numbers T := {r € Q: 0 < r, r> < 2}, the argument then gives the conclusion that y :=
sup T satisfies y? = 2. Since we have seen in Theorem 2.1.4 that y cannot be a rational
number, it follows that the set T that consists of rational numbers does not have a supremum
belonging to the set Q. Thus the ordered field @ of rational numbers does not possess the
Completeness Property.

Density of Rational Numbers in R

We now know that there exists at least one irrational real number, namely ﬁ Actually
there are “more” irrational numbers than rational numbers in the sense that the set of
rational numbers is countable (as shown in Section 1.3), while the set of irrational numbers
is uncountable (see Section 2.5). However, we next show that in spite of this apparent
disparity, the set of rational numbers is “dense” in R in the sense that given any two real
numbers there is a rational number between them (in fact, there are infinitely many such
rational numbers).

2.4.8 The Density Theorem If x and y are any real numbers with x <y, then there
exists a rational numberr € Q such thatx <r < y.

Proof. 1t is no loss of generality (why?) to assume that x > 0. Since y —x > 0, it
follows from Corollary 2.4.5 that there exists n € N such that 1/n < y — x. Therefore,
we have nx + 1 < ny. If we apply Corollary 2.4.6 to nx > 0, we obtain m € N with
m — 1 < nx < m. Therefore, m < nx + 1 < ny, whence nx < m < ny. Thus, the rational
number r := m/n satisfiesx <r < y. QED.

To round out the discussion of the interlacing of rational and irrational numbers, we

have the same “betweenness property” for the set of irrational numbers.

2.4.9 Corollary Ifx and y are real numbers with x <y, then there exists an irrational
number z such thatx < z < y.
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Froof.  If we apply the Density Theorem 2.4.8 to the real numbers x/\/f and y/\/i, we

-2in a rational number r # 0 (why?) such that

X Y
—_—<r <=

V2 V2

°n z := r+/2 is irrational (why?) and satisfies x < z < y. QE.D.

Exercises for Section 2.4

en 2
e
1al
aal
1al
Im
of 6.
TS
nt 7.
al
*h
re
. 8.
It
th
al
9.
10.
al

n

Show that sup{l — 1/n:n € N} = 1.
If S:={1/n—1/m:n,m € N}, find inf § and sup S.

Let § € R be nonempty. Prove that if a number « in IR has the properties: (i) for every n € N
the number u — 1/n is not an upper bound of S, and (ii) for every number n € N the number
u + 1/n is an upper bound of S, then u = sup S. (This is the converse of Exercise 2.3.8.)

Let S be a nonempty bounded set in R.
(a) Leta > 0,andletaS := {as: s € S}. Prove that

inf(aS) = ainf §, sup(aS) = asup S.
(b) Letbh < 0andlethS = {bs: s € S}. Prove that
inf(bS) = bsup S, sup(bS) = binf §.

Let X be a nonempty set and let f: X — R have bounded range in R. If a € R, show that
Example 2.4.1(a) implies that

sup{a + f(x):x € X} =a +sup{f(x): x € X}
Show that we also have '
infla+ f(x):x € X} =a+inf{f(x): x € X}

Let A and B be bounded nonempty subsets of R, and let A+ B:={a+b:a € A, b € B).
Prove that sup(A 4+ B) = sup A + sup B and inf(A + B) = inf A + inf B.

Let X be a nonempty set, and let f and g be defined on X and have bounded ranges in R. Show
that

sup{ f(x) + g(x): x € X} < sup{f(x) : x € X} + sup{g(x) : x € X}
and that
inf{f(x):x € X} +inf{g(x) : x € X} <inf{f(x) + g(x) : x € X}.
Give examples to show that each of these inequalities can be either equalities or strict inequalities.

LetX=Y:={xeR:0<x <1}.Defineh: X x¥ — Rby h(x,y) :=2x + y.

(a) Foreachx € X, find f(x) := sup{h(x, y): y € Y'}; then find inf{ f (x): x € X}.

(b) Foreach y €Y, find g(y) := inf{h(x, y): x € X}; then find sup{g(y): y € ¥}. Compare
with the result found in part (a).

Perform the computations in (a) and (b) of the preceding exercise for the functionh: X x ¥ — R
defined by :
0 ifx<y
h = '
*x.) |1 if x > y.

Let X and ¥ be nonempty setsandleth : X x ¥ — RhaveboundedrangeinR. Let f : X — R
and g : ¥ — R be defined by

f(x) :=sup{h(x,y): y e Y}, g(y) :==inf{h(x,y) : x € X}.




	MA4331_1
	MA4331_1b

