HW \#1

Please, write clearly and justify all your steps, to get proper credit for your work. You can cite general results from the book or from class.
(1) [6Pts] Let $x, y \in \mathbb{R}$.
(a) Prove the triangle inequality:

$$
|x+y| \leq|x|+|y|
$$

[Hint: You can consider separately the cases where x, y have different sign or same sign. Or you can derive it from the properties of the absolute values proved in class]
(b) Prove by induction that

$$
\left|x_{1}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|
$$

(c) Prove the reverse triangle inequality:

$$
||x|-|y|| \leq|x-y|
$$

(2)[2Pts] Let $x, a \in \mathbb{R}, \epsilon>0$. Show that $|x-a|<\epsilon$ if and only if $a-\epsilon<x<a+\epsilon$.
(3)[2Pts] Let A, B be nonempty subsets of \mathbb{R}. Let $A+B=\{a+b: a \in$ $A, b \in B\}$. Prove that $\sup (A+B)=\sup A+\sup B$ and that $\inf (A+B)=$ $\inf A+\inf B$.
(4) [6Pts] For the following sets, find infimum and supremum and indicate if they have maximum and minimum.
(a) $A=\left\{a+a^{-1}: a \in \mathbb{Q}, a>0\right\}$
(b) $B=\left\{a+(2 a)^{-1}: a \in \mathbb{Q}, 0.1 \leq a \leq 5\right\}$
(c) $C=\left\{x e^{-x}: x \in \mathbb{R}\right\}$
(5)[2Pts] Let $S=\left\{1-(-1)^{n} / n: n \in \mathbb{N}\right\}$. Find $\sup S$ and $\inf S$.

