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K. Show that the sequence (logn),_, does not converge.

2 The Real Numbers

Since AOAB C sector OAB C AOAC, we have the same relationship for their

areas:

sin @ _Q tan@ﬂsine

) 5 <72 " 2cos0

A manipulation of these inequalities yields

sin 0
0« ——<1.
coS 9

In particular, cos % < nsin ,1; < 1. Moreover,

1
cos(1) = y/1—=sin?(1) >4/1- (%)2 > 1 -

However,

liml—-lz-:lzliml.

n—oo n n—rc0

Therefore, by the Squeeze Theorem, lim n sin% =51
n—o

Exercises for Section 2.4

In each of the following, compute the limit. Then, using € = 1075, find an integer N that

satisfies the limit definition.
) 2
sinn” ; 3" n*+2n+1
a) lim b) lim ——— lim — j
(@) o, NG ®) n—wloglogn el n! n—eo 202 —n+2
n
Show that ’}im sin 2 does not exist using the definition of limit.

(e) limv/n? +n—
fraret

Prove that if a, < by forn>1,L= limay, and M = lim by, then L < M.
n—00 n—oo
Prove that if L = lim ap, then L = limap, and L = lima,.
e n—ro0 o0

Sometimes, a limit is defined informally as follows: “As n goes to infinity, a, gets closer and
closer to L.” Find as many faults with this definition as you can.

(a) Can a sequence satisfy this definition and still fail to converge?
(b) Can a sequence converge yet fail to satisfy this definition?

Define a sequence (an)p; such that lima,. exists but lim a, does not exist.
' e annd n—oo

Suppose that r}im a, = L and L # 0. Prove there is some N such that a, # 0 foralln > N.

Give a careful proof, using the definition of limit, that lima, = L and y}imb,, = M imply tha
n—oo 1—00

lim 2ay +3by, = 2L+3M.

n—soo

. 1\ o ; .
For each x € R, determine whether <—1:7> 1 has a limit, and compute it when it exists
X"/ n=

Let ag and a1 be positive real numbers, and set dp2 = 1/dn+1 1 Jan forn > 0.

(a) Show that there is N such that for alln > N, an > 1s
(b) Let &, = |a, —4|. Show that &2 < (gny1 t+&n)/3forn=N.
(c) Prove that this sequence converges.

2 Basic Properties:

25.1. PR yPOSITION
:'
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2 The Real Numbers

© the same relationship for their

in 6
Cos 6
)~ —i.
n?
&= 10~°, find an integer N that
w0

W, ©@lmyeZi,

mmir
sthen 7 < 7.
PES t0 infinity, g, gets closer and
-
erpe
does - XISt ‘
Rt g, <0 for all n >N.
=L and Imp, =M imply that
WS Compute it when jt exists.
V&, forn >0.

s of Limits

Wi Properties of Limits

FROPOSITION. If (an),_; is a convergent sequence of real numbers,
e (e, - n < N} is bounded.

Lesl — lima,. If we set € = 1, then by the definition of limit, there is some
WS et a, — L < 1foralln > N. In other words,

L-1<a,<L+1 forall n>N.

W= M = max{a,a,...,any_1,L+ 1} and m = min{aj,ay,...,ay-1,L — 1}.
e “oralln, we have m < g, < M. ]

¥ % 250 crucial that limits respect the arithmetic operations. Proving this is
WS orward. The details are left as exercises,

>SS

«~=.2. THEOREM. Ifnli_lgan =1, r}l_r)r;b =M, and ot € R, then
Sma,+by=L+M,

" smaa, = oL,

| 1"7"17" =LM, and
ay, L

& hm = M £O.
B~ TME

'a the sequence (a,/by),_,, we ignore terms with by = 0. There is no problem
“wng this because M # 0 implies that b, £ 0 for all sufficiently large n (see Exer-

“se 2.4.G). (We use “for all sufficiently large n” as shorthand for saying there is
some N so that this holds for all n > N)

Exercises for Section 2.5

% Prove Theorem 2.5.2.  HINT: For part (4), first bound the denominator away from 0.
B Compute the following limits.

z 100+5n 1
. anZ s D . CsCs  2arctann
(a) lim — 2”2 (b) lim T () im—2 4 27
n=epsin® & n—oo gt n—e logn

C. If lima, = L > 0, prove that lim \an = VL. Be sure to discuss the issue of when /@y makes
n—eo R—s00
sense.  HINT: Express |/, — v/L| in terms of |a, — L|.

D. Let (ay),_, and (b,);_; be two sequences of real numbers such that lan — ba| < L. Suppose
that L = lim a, exists. Show that (by)y—y converges to L also.
n—00

n
E. Find lim ]—O-g(—zlﬁ—).
n—soo "

F. (a) Letx, = /n— 1. Use the fact that (1+x,)" = n to show that X2 <2/n.
HINT: Use the Binomial Theorem and throw away most terms.

HINT: log(2 +3") = log3" + log 22"
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The following easy corollary of the Monotone Convergence Theorem is again a
reflection of the completeness of the real numbers. This is just the tool needed to es-
tablish the key result of the next section, the Bolzano—Weierstrass Theorem (2.7.2).

Again, the corresponding result for intervals of rational numbers is false. See
Example 2.7.6. The result would also be false if we changed closed intervals to
open intervals. For example, (V1 (0, —lﬁ) =g.

2.6.3. NESTED INTERVALS LEMMA.
Suppose that I, = [an,bn) ={x€R:a, <x < by} are nonempty closed intervals
such that I, C I for each n > 1. Then the intersection M1 1n is nonempty.

PROOF. Notice that since ;1] is contained in Iy, it follows that
an < apyr < by < by.

Thus (a,) is a monotone increasing sequence bounded above by by; and likewise

(by) is a monotone decreasing sequence bounded below by ai. Hence by Theo-

rem 2.6.1, a = limay, exists, as does b = lim b,,. By Exercise 2.4.C, a < b. Thus
n— n—oo

ar<a<b<b.

Consequently, the point a belongs to I for each k > 1. |

Exercises for Section 2.6

A. Say that lima, = oo if for every R € R, there is an integer N such that a, > Rforalln>N.
n—eo
Show that a divergent monotone increasing sequence CONVerges to oo in this sense.
Leta; = 0 and ant1 = v/3 +2an for n > 1. Show that limay exists and find the limit.
Nn—00
Is S = {x e R: 0 <sin(%) < 3} bounded above (below)? If so, find sup S (inf$).
Evaluate lim /37 +5".
n—00

Suppose (a,) is a sequence of positive real numbers such that a1 — 2an +an-1 >0 for all
n > 1. Prove that the sequence either converges or tends to +oo.

m g0 W

Let a, b be positive real numbers. Set xo = a and xn1 = (x;'+b)" forn>0.

!

(a) Prove that x, is monotone decreasing.
(b) Prove that the limit exists and find it.

G. Leta,=(Y}_,1/k)—lognforn > 1. Euler’s constant is defined as Y = ,}E‘;aw Show that

(an)>; is decreasing and bounded below by zero, and so this limit exists.
HINT: Prove that 1/(n+1) <log(n+1) —logn < 1/n.

H. Letx,= \/17+ 2+m'

(a) Show that x, < Xn+1.
(b) Show that x2,; < 1++v/2x,. HINT: Square xn+1 and factor a 2 out of the square root.
(c) Hence show that x, is bounded above by 2. Deduce that limx, exists.

n—oo
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26 2 The Real Numbers

Tterating this, we obtain b% ~ gz 3L, b% —8<3273% and bﬁ —8 <327 7. In general,
we establish by induction that

0<bi-8<32 2.
Since by, is positive and B —8=(b—+8)(b+ /8), it follows that

3214211—1
238

Lastly, using the fact that 322 = 1024 > 10°, we obtain

b2 —8

0<b,—V8=—"—x <6327
- VB= o

0< by — 8 < 10107327,

In particular, limb, = /8. In fact, the convergence is so rapid that b1o approximates
n—co
/8 to more than 750 digits of accuracy. See Example 11.2.2 for a more general

analysis in terms of Newton’s method. _
Leta, =8/by. Thenay is monotone increasing to \/§ .Both a, and b, are rational,

but /8 is irrational. Thus the sets J={xeQ:a,<x < by} form a decreasing
sequence of nonempty intervals of rational numbers with empty intersection.

Exercises for Section 2.7

>

Show that (@) = (_n_co_s"_(ﬂ) _, hasa convergent subsequence.

2t/ n
Does the sequence (by) = (n+cos(nm)vn® + 1);_, have a convergent subsequence?
Does the sequence (an) = (coslogn)y_; converge?

Show that every sequence has a monotone subsequence.

e avw

Use trig identities to show that |sinx — siny| < |x—yl.
HINT: Leta = (x+y)/2and b= (x—y)/2. Use the addition formula for sin{a +b).

Define x; =2 and xp41 = %(xn+5/xn) forn>1.

=

(a) Find a formula for x, ; — 5 in terms of x2 5.
(b) Hence evaluate r}im Xp.

(c) Compute the first ten terms on a computer or a calculator.
(d) Show that the tenth term approximates the limit to over 600 decimal places.

G. Let (xy)5; be a sequence of re
L= limxs,—1 = limx3p41 = lim x3,. Show that lim x, exists and equals L.
n—s0 n—r00 n—roo n—oo

H. Let (x,)7; be a sequence in R. Suppose there is a nu
()7, has a subsubsequence (xn,k(l)) 1, With llg'g Xy

k=1
converges to L. HINT: If not, you could find a subsequence bounded away from L.

L  Suppose (¥n)p=

each k > 1, there is a subsequence of (Xn) ey €O

converges to L. HINT: Find an increasing sequence 1t such that |x,, —L| < 1/k.

al numbers. Suppose that there is a real number L such that

mber L such that every subsequence
)= L. Show that the whole sequence

| is a sequence in R, and that Ly are real numbers with ]}im Ly = L. If for
nverging to Ly, show that some subsequencs
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> Real Numbers

327 . In general,

approximates

10re general

are rational,

Cauchy Sequences 27

(a) Suppose that (x,),_; is a sequence of real numbers. If L = liminfx,, show that there is a

subsequence (.\'m) e such that }}im Xp, = L.
. {—+ 00

(b) Similarly, prove that there is a subsequence (x”, )7:1 such that llim Xp, = limsupxy.

Let (x,)_, be an arbitrary sequence. Prove that there is a subsequence (¥, ):’:] which con-
verges or Alirn Xy, = 0 OF ,\lim Xy = —00.
T fon

Construct a sequence (xp),—; such that for every real number L, there is a subsequence
(tng ) ey With ,}EI; iy, =

2.8 Cauchy Sequences

Can we decide whether a sequence converges without first finding the value of the
limit? To do this, we need an intrinsic property of a sequence which is equivalent to
convergence that does not make use of the value of the limit. This intrinsic property
shows which sequences are ‘supposed’ to converge. This leads us to the notion of
a subset of R being complete if all sequences in the subset that are ‘supposed’ to
converge actually do. As we shall see, this completeness property has been built into
the real numbers by our construction of infinite decimals.

To obtain an appropriate condition, notice that if a sequence (a,) converges to L,
then as the terms get close to the limit, they are getting close to each other.

2.8.1. PROPOSITION. Let (ayn);., be a sequence converging to L. For every
€ > 0, there is an integer N such that

lay —am| <€ forall mn>N.

PROOF. Fix € > 0 and use the value £/2 in the definition of limit. Then there is an
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of items (2) to (5)

sleteness Theorem

2.9 Countable Sets

implies the Least Upper Bound Principle, go through our proof to obtain an increas-

31

ing sequence of lower bounds, y;, and a decreasing sequence of elements x; € S
with x; < yx + 107%. Show that the sequence x1,y1,x2,y2, ... is Cauchy. The limit L
will be the greatest lower bound. Fill in the details yourself (Exercise 2.8.G).

Exercises for Section 2.8

=e o v p

=}

Let (x,) be Cauchy with a subsequence (xy, ) such that l}im Xn, = a. Show that lim x, = a.
00 n—oo
Give a sequence (ay) such that lim |a, — an+1| = 0, but the sequence does not converge.
n—se0
Let (ay) be a sequence such that ,\111_1’130 YN i |an — ans1] < oo. Show that (a,) is Cauchy.

If (%), is Cauchy, show that it has a subsequence (x, ) such that Y3 ; [xy, — Xy, | < ce.

Suppose that (a,) is a sequence such that a, < a2,12 < agpi3 < aggy for all n > 0. Show
that this sequence is Cauchy if and only if nlim lan — an+1] = 0.

Give an example of a sequence (a,) such that az, < azyi2 < agpes < agpyy forall n >0
which does not converge.

Fill in the details of how the Completeness Theorem implies the Least Upper Bound Principle.

Let ag = 0 and set a,,.; = cos(ay,) for n > 0. Try this on your calculator (use radian mode!).

(a) Show that azy < agpro < agpr3 < agpyeg foralln > 0.
(b) Use the Mean Value Theorem to find an explicit number » < 1 such that

|ant2 — ans1| < rlay —ay41| for all n > 0. Hence show that this sequence is Cauchy.
(c) Describe the limit geometrically as the intersection point of two curves.

Evaluate the continued fraction 1

1+
1+

1+

1
[

Let xo = 0 and x,,1.1 = +/5 — 2x,, for n > 0. Show that this sequence converges and compute
the limit.  HINT: Show that the even terms increase and the odd terms decrease.

Consider an infinite binary expansion (0.e1e2€3. .. )pase 2, Where each e; € {0,1}. Show that
an =Y 12 'e; is Cauchy for every choice of zeros and ones.

One base-independent construction of the real numbers uses Cauchy sequences of rational
numbers. This exercise asks for the definitions that go into such a proof.

(a) Find a way to decide when two Cauchy sequences should determine the same real number
without using their limits.  HINT: Combine the two sequences into one.

(b) Your definition in (a) should be an equivalence relation. Is it? (See Appendix 1.3.)

(c) How are addition and multiplication defined?

(d) How is the order defined?

2.9 Countable Sets

Cardinality measures the size of a set in the crudest of ways—by counting the num-
bers of elements. Obviously, the number of elements in a set could be 0, 1, 2, 3, 4,
or some other finite number. Or a set can have infinitely many elements. Perhaps




