Math 4332/6313 — Spring 2017 Name:

Test #2

This is a closed book test. Please, write clearly and justify all your steps, to get proper credit for

your work. You can cite general theorems from the book if needed.

(1) [3 Pts] Suppose that P is a linear operator on an inner product space
V satistying PP = P and

(Pv,w) = (v, Pw) forall v,w e V.

Prove that P is an orthogonal projection (HINT: need to show that the range
of P is orthogonal to the kernel of P).

(2) [3 Pts] Suppose that (f) is a sequence of continuous functions defined
on R"” and converging uniformly to a function f. Suppose that each f; is
bounded by a constant C. Prove that f is bounded.

(3)[3 Pts] Suppose that (fx) is a sequence of continuous functions on [0, 1]
and let s,(z) = > ,_; fe(x). Show that if (s,) converges uniformly on [0, 1]
then the sequence (fi) converges uniformly to 0.

(4)[3 Pts] For each of the following statements, either prove it (you can use
the theorems discussed in class) or give a counterexample (in this case, you

need to show how your counterexample disproves the statement).
(a) Suppose that (f,,) is a sequence of continuous functions on [0, 1] with
lim,, o0 fo = f. Then lim [ f,(z)dz = [} f(z)da.
(b) Let f and g be uniformly continuous functions. Then the product f g is
a uniformly continuous function.
(¢) A closed and bounded subset of a normed space is compact.
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