Test \#2

This is a closed book test. Please, write clearly and justify all your steps, to get proper credit for your work. You can cite general theorems from the book if needed.
(1) [3 Pts] Suppose that P is a linear operator on an inner product space V satisfying $P P=P$ and

$$
\langle P v, w\rangle=\langle v, P w\rangle \quad \text { for all } v, w \in V \text {. }
$$

Prove that P is an orthogonal projection (HINT: need to show that the range of P is orthogonal to the kernel of $P)$.
(2) [3 Pts] Suppose that $\left(f_{k}\right)$ is a sequence of continuous functions defined on \mathbb{R}^{n} and converging uniformly to a function f. Suppose that each f_{k} is bounded by a constant C_{k}. Prove that f is bounded.
(3) [3 Pts] Suppose that $\left(f_{k}\right)$ is a sequence of continuous functions on $[0,1]$ and let $s_{n}(x)=\sum_{k=1}^{n} f_{k}(x)$. Show that if $\left(s_{n}\right)$ converges uniformly on $[0,1]$ then the sequence $\left(f_{k}\right)$ converges uniformly to 0 .
(4) $[3 \mathrm{Pts}]$ For each of the following statements, either prove it (you can use the theorems discussed in class) or give a counterexample (in this case, you need to show how your counterexample disproves the statement).
(a) Suppose that $\left(f_{n}\right)$ is a sequence of continuous functions on $[0,1]$ with $\lim _{n \rightarrow \infty} f_{n}=f$. Then $\lim \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} f(x) d x$.
(b) Let f and g be uniformly continuous functions. Then the product $f g$ is a uniformly continuous function.
(c) A closed and bounded subset of a normed space is compact.
(1) Since $P P=P$, then for $o, w \in V$

$$
\begin{aligned}
\langle P v,(I-P) w\rangle & =\langle P v, w\rangle-\langle P v, P w\rangle=\langle v\rangle \\
\quad \text { (vosy hipollemu } & =\langle w, P w\rangle-\langle v, P P w\rangle=\langle v, P w\rangle-\langle v, P w\rangle=0
\end{aligned}
$$

This shows unt P o \perp (I-P)w por uny o,w $\in V$ provy tit $\operatorname{ran}(P) \perp \operatorname{ker}(P)$.
Rk $\quad P_{x}=0$ iff $(I-P)_{x}=x$ and $x=(I-P)_{y}$ welies $P_{x}=\left(P-P^{2}\right) y=0$
This shous the kex $(P)=\operatorname{ran}(I-P)$
(2) Given $\varepsilon \gg, Z N \in \mathbb{N}$ s.t. $U f_{k}-f \|_{\infty}<\varepsilon$ if $k \geq N$.

Sine $\left\|F_{k}\right\|_{\infty}<C_{k}$, then $\left\|f_{\infty}\right\|_{\infty} \leq\left\|f-G_{N}\right\|_{\infty}+\left\|f_{N}\right\|_{\infty}<\varepsilon+C_{N}<\infty$,

This shras itt f is boundel.
(3) Give $\varepsilon>=, \exists N \in \mathbb{N}$ s.t. $\left\|S_{n}-S_{m}\right\|_{\infty}=\left\|\sum_{k=n+1}^{m} \delta_{k}\right\|_{\infty}<\varepsilon \quad$ if $n, m \geq N$. We car chuere $n=N, m=N+1$

This inpues ut $\left\|f_{k}\right\|_{\infty}<\varepsilon$ if $k \geqslant N$
This shows itt P_{u} anreager uniforency TU Q
(a) (a) FACSE

$$
\begin{aligned}
& f_{n}(x)= \begin{cases}u^{2} x & \text { if } 0 \leq x \leq 1 / u \\
k^{2}\left(\frac{2}{k}-x\right) & \text { if } 1 / u \leq x \leq \frac{2}{k} \\
0 & \text { if } 2 / k \leq x \leq 1\end{cases} \\
& \lim _{x \rightarrow \infty} \operatorname{Fec}_{x}(x)=0 \\
& \text { Howenere } \int_{0}^{1} f_{x}\left(x \mid d x=1 \forall u \text {. Huan } \lim _{u \rightarrow \infty} \int_{0}^{1} f_{u}(x) d x \neq \int_{0}^{1} \lim _{x} C_{u} a x d x\right.
\end{aligned}
$$

(b) FAESE TAL $f(x)=x, g(x)=x . \quad f A g(x)=x^{2}$ is NIT GVIF certion one \mathbb{R}
(c) FSLSE Tak $F=\left\{f_{k}(A)=x^{k} ; k \geq 1\right\} \subset \subset(0,1]$

Fis a clond at boulel set. However we han shown Ut Hoss seque hor no anexjet sindpue in $C[0,1]$, here the sit is wot conpact. [CF. ExARPLE 8.61 m Bodele]
(1) If $y \in R_{2 x} P$, th $P_{y}=y$. If $x \in \operatorname{Kar}(P), P_{x}=0$

$$
\langle x, y\rangle=\left\langle x, P_{y}\right\rangle=\left\langle P_{x, y}\right\rangle=0
$$

Huce $\operatorname{Ram}_{\text {an }}(P) \perp \operatorname{Ket}(P)$

