HW \#1

Please, write clearly and justify all your steps, to get proper credit for your work.
(1) [5 Pts] Let $v_{1}=\left(v_{1}, v_{2}\right)$ and $u_{1}=\left(u_{1}, u_{2}\right)$ be vectors in \mathbb{C}^{2} and let $M=\left(\begin{array}{cc}2 & -i \\ i & 3\end{array}\right)$. Prove that

$$
\langle u, v\rangle=\left(\overline{u_{1}}, \overline{u_{2}}\right) M\binom{v_{1}}{v_{2}}
$$

defines an inner product on \mathbb{C}^{2}.
(2)[5 Pts] Show that the inner product of $L^{2}([a, b])$ defined by

$$
\langle f, g\rangle=\int_{a}^{b} f(t) \overline{g(t)} d t
$$

is conjugate-symmetric, homogeneous and linear.
This problem is part of Exercise 4 at p. 35 in the textbook. You are encouraged to work out the whole problem on your own, but I will collected the part indicated above. The solution of the positivity part is given in the back of the book.

