## HW \#3

Please, write clearly and justify all your steps, to get proper credit for your work.
(1) [8 Pts] Let $V=L^{2}([-\pi, \pi])$ and consider the subspace $V_{0} \subset V$ given by

$$
V_{0}=\operatorname{span}\{1, \cos x, \sin x\}
$$

(i) Find an ON basis for $V_{0}$ (note that $V_{0}$ is a subspace of $L^{2}([-\pi, \pi])$ so that the functions are only defined on $[-\pi, \pi])$.
(ii) Show that the space $V_{1}=\operatorname{span}\{\cos (2 x), \sin (2 x)\} \subset V$ is orthogonal to $V_{0}$. Is $V_{1}$ the orthogonal complement of $V_{0}$ ? Justify your answer.
(iii) Find the orthogonal projection of $f(x)=\cos (3 x)$ onto $V_{0}$
(iv) Find the orthogonal projection of $f(x)=x$, for the interval $[-\pi, \pi]$, onto $V_{0}$ and onto $V_{1}$.
(2) [3 Pts] Consider the inner product space $V=L^{2}([0,1])$. Compute the orthogonal projection of the function $f(x)=e^{-x}$, for $x \in[0,1]$, onto the subspace $V_{0}=\operatorname{span}\{\phi, \psi\}$, where

$$
\begin{aligned}
& \phi(x)= \begin{cases}1 & 0 \leq x<1 \\
0 & \text { otherwise } .\end{cases} \\
& \psi(x)= \begin{cases}1 & 0 \leq x<\frac{1}{2} \\
-1 & \frac{1}{2} \leq x<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

