Quiz \#2

Please, type or write legibly, scan, save file as LASTNAME_FIRSTNAME_Q2.pdf and email to dlabate@math.uh.edu or dlabate@uh.edu. You need to email to me no later than 11:30AM on Jan 28.
(1) $[5 \mathrm{Pts}]$ Compute the orthogonal complement W of the space V in \mathbb{R}^{3} spanned by the vector $(2,1,-1)$
(2) [5 Pts] Find two linearly independent vectors in W.
(3) [2 Pts Extra credit] Find an ONB of W.

SOLUTION
(1) The orthogonal complement to V is the plane of equation

$$
2 x+y-z=0
$$

(2) Here are 2 linearly independent vectors in W (they are vectors in the plane, i.e., they satisfy the plane equation)

$$
(1,-2,0), \quad(0,1,1)
$$

(3) We can take the cross product of $(2,1,-1)$ and $(0,1,1)$ to find a vector orthogonal to $(0,1,1)$

We find $(0,1,1) \wedge(2,1,-1)=(-2,2,-2)$.
Now we can nomalize the vectors to get an ONB of W :

$$
\frac{1}{\sqrt{2}}(0,1,1), \quad \frac{1}{\sqrt{3}}(-1,1,-1)
$$

