Quiz \#4

Please, type or write legibly, scan, save file as LASTNAME_FIRSTNAME_Q4.pdf and email to dlabate@math.uh.edu or dlabate@uh.edu. You need to email to me no later than 11:30AM on Jan 28.

Consider the inner product space $V=L^{2}([0,1])$.
(1) [8 Pts] Compute the orthogonal projection of the function $f(x)=$ $\sin (2 \pi x)$, for $x \in[0,1]$, onto the subspace V_{0} of V defined by $V_{0}=\operatorname{span}\{\phi, \psi\}$, where

$$
\phi(x)=\left\{\begin{array}{ll}
1 & 0 \leq x<1 \\
0 & \text { otherwise }
\end{array} \quad \psi(x)= \begin{cases}1 & 0 \leq x<\frac{1}{2} \\
-1 & \frac{1}{2} \leq x<1 \\
0 & \text { otherwise }\end{cases}\right.
$$

(2) [3 Pts] Let $V_{1}=\operatorname{span}\left\{\psi_{2}\right\} \subset V$ where $\psi_{2}(x)=\psi(2 x)$. Show that $V_{1} \perp V_{0}$, that is, V_{1} is orthogonal to V_{0}.
[Hint: plot ψ_{2}; this will help you to guide your calculation showing that ψ_{2} is orthogonal to both ϕ and ψ.]

