Quiz \#4

Please, type or write legibly, scan, save file as LASTNAME_FIRSTNAME_Q4.pdf and email to dlabate@math.uh.edu or dlabate@uh.edu. You need to email to me no later than 11:30AM on Jan 28.

Consider the inner product space $V=L^{2}([0,1])$.
(1) [8 Pts] Compute the orthogonal projection of the function $f(x)=$ $\sin (2 \pi x)$, for $x \in[0,1]$, onto the subspace V_{0} of V defined by $V_{0}=\operatorname{span}\{\phi, \psi\}$, where

$$
\phi(x)=\left\{\begin{array}{ll}
1 & 0 \leq x<1 \\
0 & \text { otherwise }
\end{array} \quad \psi(x)= \begin{cases}1 & 0 \leq x<\frac{1}{2} \\
-1 & \frac{1}{2} \leq x<1 \\
0 & \text { otherwise }\end{cases}\right.
$$

Solution.

$\{\phi, \psi\}$ is an ONB of V_{0}.

$$
\begin{gathered}
\langle f, \phi\rangle=\int_{0}^{1} \sin (2 \pi x) d x=0 \\
\langle f, \psi\rangle=\int_{0}^{1 / 2} \sin (2 \pi x) d x-\int_{1 / 2}^{1} \sin (2 \pi x) d x=\frac{1}{2 \pi}\left(-\left.\cos (2 \pi x)\right|_{0} ^{1 / 2}+\left.\cos (2 \pi x)\right|_{1 / 2} ^{1}\right)=\frac{2}{\pi}
\end{gathered}
$$

Hence the orthogonal projection of f onto V_{1} is

$$
f_{1}=\langle f, \phi\rangle \phi+\langle f, \psi\rangle \psi=\frac{2}{\pi} \psi
$$

(2) [3Pts] Let $V_{1}=\operatorname{span}\left\{\psi_{2}\right\} \subset V$ where $\psi_{2}(x)=\psi(2 x)$. Show that $V_{1} \perp V_{0}$, that is, V_{1} is orthogonal to V_{0}.
[Hint: plot ψ_{2}; this will help you to guide your calculation showing that ψ_{2} is orthogonal to both ϕ and ψ.]

Solution.

$$
\psi_{2}(x)=\psi(2 x)= \begin{cases}1 & 0 \leq x<\frac{1}{4} \\ -1 & \frac{1}{4} \leq x<\frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Since both ϕ and ψ are constant and equal to 1 in $\left[0, \frac{1}{2}\right]$, then

$$
\begin{aligned}
& \left\langle\psi_{2}, \phi\right\rangle=\int_{0}^{1 / 2} \psi(2 x) d x=\int_{0}^{1 / 4} d x-\int_{1 / 4}^{1 / 2} d x=\frac{1}{4}-\frac{1}{4}=0 \\
& \left\langle\psi_{2}, \psi\right\rangle=\int_{0}^{1 / 2} \psi(2 x) d x=\int_{0}^{1 / 4} d x-\int_{1 / 4}^{1 / 2} d x=\frac{1}{4}-\frac{1}{4}=0
\end{aligned}
$$

