Quiz \# 5

Please, type or write legibly, scan, save file as LASTNAME_FIRSTNAME_Q5.pdf and email to dlabate@math.uh.edu or dlabate@uh.edu. You need to email to me no later than 11:30AM on March 3.

Consider the function

$$
f(x)= \begin{cases}1+\frac{2}{\pi} x & \text { if }-\frac{\pi}{2} \leq x<0 \\ 1-\frac{2}{\pi} x & \text { if } \quad 0 \leq x \leq \frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}
$$

(1) Sketcth the function.
(2) Compute the Fourier series, valid in the interval $[-\pi, \pi]$, of $f(x)$.

IMPORTANT: Take advantage of even/odd properties to reduce calculations.

Solution.

$$
F(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k x)+b_{k} \sin (k x)
$$

Since f is even, the terms $b_{k}=0$ for all k.

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{0}^{\pi / 2}\left(1-\frac{2}{\pi} x\right) d x=\left.\frac{1}{\pi}\left(x-\frac{x^{2}}{\pi}\right)\right|_{0} ^{\pi / 2}=\frac{1}{\pi}\left(\frac{\pi}{2}-\frac{\pi^{2}}{4 \pi}\right)=\frac{1}{2}-\frac{\pi}{4} \\
& a_{k}=\frac{2}{\pi} \int_{0}^{\pi / 2}\left(1-\frac{2}{\pi} x\right) \cos (k x) d x=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (k x) d x-\frac{4}{\pi^{2}} \int_{0}^{\pi / 2} x \cos (k x) d x
\end{aligned}
$$

We have:

$$
\begin{aligned}
& \frac{2}{\pi} \int_{0}^{\pi / 2} \cos (k x) d x=\left.\frac{2}{k \pi} \sin (k x)\right|_{0} ^{\pi / 2}=\frac{2}{k \pi} \sin \left(k \frac{\pi}{2}\right) \\
& \frac{4}{\pi^{2}} \int_{0}^{\pi / 2} x \cos (k x) d x
\end{aligned}=\frac{4}{\left.\pi^{2} \frac{x}{k} \sin (k x)\right|_{0} ^{\pi / 2}-\frac{4}{\pi^{2} k} \int_{0}^{\pi / 2} \sin (k x) d x} \begin{aligned}
& =\frac{4}{\pi^{2}} \frac{x}{\operatorname{s}} \sin \left(k \frac{\pi}{2}\right)+\left.\frac{4}{\pi^{2} k^{2}} \cos (k x)\right|_{0} ^{\pi / 2} \\
& =\frac{4}{\pi^{2}} \frac{x}{k} \sin \left(k \frac{\pi}{2}\right)+\frac{4}{\pi^{2} k^{2}} \cos \left(k \frac{\pi}{2}\right)-\frac{4}{\pi^{2} k^{2}}
\end{aligned}
$$

Hence, for $k \geq 1$,
$a_{k}=\frac{2}{k \pi} \sin \left(k \frac{\pi}{2}\right)-\frac{4}{\pi^{2}} \frac{x}{k} \sin \left(k \frac{\pi}{2}\right)-\frac{4}{\pi^{2} k^{2}} \cos \left(k \frac{\pi}{2}\right)+\frac{4}{\pi^{2} k^{2}}$

