Quiz \#7

Please, type or write legibly, scan, save file as LASTNAME_FIRSTNAME_Q7.pdf and email to dlabate@math. uh. edu or dlabate@uh.edu. You need to email to me no later than 11:30AM on Apr 6.
(1) Use the definition given in class to compute the Fourier transform of

$$
f(t)= \begin{cases}t & \text { if }-\pi \leq t \leq \pi \\ 0 & \text { otherwise }\end{cases}
$$

SOLUTION:

Since f is an odd function, we can simplify $e^{-i \omega t}=\cos (\omega t)-i \sin (\omega t)$ by dropping the cosine term. Hence we have:

$$
\begin{aligned}
\hat{f}(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} t e^{-i \omega t} d t \\
& =-i \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} t \sin (\omega t) d t \\
& =-i \sqrt{\frac{2}{\pi}}\left(-\left.\frac{t}{\omega} \cos (\omega t)\right|_{0} ^{\pi}+\frac{1}{\omega} \int_{0}^{\pi} \cos (\omega t) d t\right) \\
& =-i \sqrt{\frac{2}{\pi}}\left(-\frac{\pi}{\omega} \cos (\omega \pi)+\frac{1}{\omega^{2}} \sin (\omega \pi)\right) \\
& =i \sqrt{\frac{2}{\pi}}\left(\frac{\pi \omega \cos (\omega \pi)-\sin (\omega \pi)}{\omega^{2}}\right)
\end{aligned}
$$

NOTE: The Fourier transform of f can also be computed by applying the 'product property' to the step function:

$$
g(t)= \begin{cases}1 & \text { if }-\pi \leq t \leq \pi \\ 0 & \text { otherwise }\end{cases}
$$

whose Fourier transform we computed in class. Hence

$$
\hat{f}(\omega)=i \frac{d}{d \omega}(\hat{g}(\omega))=i \frac{d}{d \omega}\left(\sqrt{\frac{2}{\pi}} \frac{\sin (\omega \pi)}{\omega}\right)
$$

