FINAL EXAM version 1 (Total points $=31+2$ extra credit)

Please, write legibly and justify all your steps to get credit for your work. To submit your exam, scan it, save it as a PDF file named LASTNAME_FIRSTNAME_exam.pdf (be sure your file size is below 5MB) and email to dlabate@math.uh.edu or dlabate@uh.edu. NOTE: You need to send your email before 1:10 PM on May 11 to receive credit.

- (1)[8 Pts] Let

$$
f(x)= \begin{cases}1 & 0 \leq x \leq 1 / 2 \\ -1 & 1 / 2<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the Fourier sine series of f on the interval $[0,1]$. Please, simplify your solution to obtain an explicit formula for the Fourier coefficients.
(b) Compute the Fourier cosine series of f on the interval $[0,1]$. Please, simplify your solution to obtain an explicit formula for the Fourier coefficients.
(c) Sketch the plots of the Fourier sine series of f and Fourier cosine series of f valid over the interval $[-1,1]$ and answer the following question: Do the Fourier sine and cosine series of f converge uniformly to f on the real line, $\infty<x<\infty$? Justify your answer.

- $(2)[3 \mathrm{Pts}]$ Let $f(x)=(\cos x+1) \cos x$.
(a) Expand the function $f(x)$ in a Fourier series valid on the interval $[-\pi, \pi]$.
(HINT: Note the special form of f. There is no need to solve any integration.).
(b) Does the Fourier series of f converge uniformly to f on the real line, $\infty<x<\infty$? Justify your answer.
- (3)[4 Pts] Let $f(t)= \begin{cases}|t| & -\frac{1}{2} \leq t<\frac{1}{2} \\ 0 & \text { otherwise } .\end{cases}$

Using the definition, compute the Fourier transform of f.
[HINT: Write $e^{-i \omega t}=\cos \omega t-i \sin \omega t$, then take advantage of the symmetry of f.]

- (4) [6 Pts] Let

$$
\phi(t)=\left\{\begin{array}{lc}
1 & 1 \leq t<2 \\
0 & \text { otherwise },
\end{array} \quad \text { and } \quad g(t)=\left\{\begin{array}{cc}
t & 0 \leq t<3 \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

(a) Compute $h(x)=(\phi * g)(x)$.
(b) Sketch the graphs of h over the interval $[-1,6]$.

- (5) [6 Pts] Let ϕ and ψ be the Haar scaling and wavelet functions respectively. Let V_{j} and W_{j} be the spaces generated by $\phi\left(2^{j} x-k\right), k \in \mathbb{Z}$, and $\psi\left(2^{j} x-k\right), k \in \mathbb{Z}$, respectively. Consider the function defined on $0 \leq x<1$ given by

$$
f(x)= \begin{cases}2 & 0 \leq x<1 / 8 \\ 0 & 1 / 8 \leq x<2 / 8 \\ 2 & 2 / 8 \leq x<3 / 8 \\ 2 & 3 / 8 \leq x<4 / 8 \\ 3 & 4 / 8 \leq x<5 / 8 \\ 1 & 5 / 8 \leq x<6 / 8 \\ -1 & 6 / 8 \leq x<7 / 8 \\ -3 & 7 / 8 \leq x<1\end{cases}
$$

(a) Express f in terms of the basis for V_{3}.
(b) Find the discrete Haar wavelet decomposition of f. That is, decompose f into its component parts in V_{0}, W_{0}, W_{1} and W_{2}.
(c) Express the Haar wavelet decomposition of f in terms of the basis functions of V_{0}, W_{0}, W_{1} and W_{2}.

- (6) $[4 \mathrm{Pts}]$ Let $g \in L^{2}(\mathbb{R})$ be a function such that

$$
\hat{g}(\xi)=\frac{1}{\sqrt{2 \pi}} \chi_{[-\pi, \pi]}(\xi)
$$

(a) Letting $g_{j, k}(x)=2^{j / 2} g\left(2^{j} x-k\right)$, use the properties of the Fourier transform to compute $\hat{g}_{j, k}(\xi)$, that is, the Fourier transform of

$$
g_{j, k}(x)=2^{j / 2} g\left(2^{j} x-k\right)
$$

(b) Verify that $\|g\|_{2}=1$ and shows that $\left\|g_{j, k}\right\|_{2}=\|g\|_{2}$

- (7)[2 Pts - Extra Credit] Consider the filter

$$
f \rightarrow f * h_{d},
$$

where

$$
h_{d}(t)=\left\{\begin{array}{lc}
1 / d \quad 0 \leq t<d \\
0 & \text { otherwise }
\end{array}\right.
$$

Let

$$
f(t)=e^{-t}(\cos 3 t-\sin 13 t+\cos 50 t+3 \sin 130 t), \quad t \in[0,2 \pi] .
$$

Which value(s) of the parameter d for the filter h_{d} will ensure that the components of the signal f with frequencies above 125 are removed and the frequencies in the range 0 to 50 are retained? Justify your answer.

