TEST \#1 - version 2

Please, show your work, justify every step and write legibly. When you are done, scan, save the file as LASTNAME_FIRSTNAME_T1.pdf and email to dlabate@math.uh.edu or dlabate@uh.edu. NOTE: You need to send your email before 11:30AM on Feb 25 to receive credit.
(1) [4 Pts]
(a) Let $V=\mathbb{R}^{3}$ and consider the subspace $V_{0} \subset V$ given by

$$
V_{0}=\operatorname{span}\{(-1,1,-1)\} .
$$

Find the orthogonal complement V_{0}^{\perp} of V_{0} in V and find and an orthonormal basis of the space V_{0}^{\perp}.
(b) Let $V=\mathbb{R}^{4}$ and consider the subspace $V_{1} \subset V$ given by

$$
V_{1}=\operatorname{span}\{(-1,1,-1,0)\} .
$$

Find the orthogonal complement V_{1}^{\perp} of V_{1} in V and find and an orthonormal basis of the space V_{1}^{\perp}. [Hint: Use part (a)]
(2)[4 Pts] Consider the inner product space $V=L^{2}([-\pi, \pi])$ with the standard inner product. Compute the orthogonal projection of the function

$$
f(x)=\left\{\begin{array}{llr}
1 & \text { if }-\pi \leq x<0 \\
-1 & \text { if } \quad 0 \leq x \leq \pi
\end{array}\right.
$$

onto the subspace $\left.V_{0}=\operatorname{span}\{1, \sin x, \cos x, \sin 2 x, \cos 2 x\} \subset L^{2}([-\pi, \pi])\right]$.
[Hint: It may be useful to use even and odd properties.]
(3) [5 Pts] Consider the sequence of functions $\left(f_{n}\right) \subset L^{2}([0,1])$ defined by

$$
f_{n}(x)= \begin{cases}1-(n x)^{2} & 0 \leq x<\frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Sketch the graph of $f_{n}(x)$ for $n=1,2,3$.
(b) Prove that the sequence $\left(f_{n}\right)$ converges to the function $f(x)=0, x \in$ $[0,1]$, in the L^{2} norm.
(c) Show that the sequence $\left(f_{n}(x)\right)$ does not converge pointwise to the functions $f(x)=0, x \in[0,1]$ [Hint: consider the point $x=0$]

