TEST \#2 - version 1

Please, show your work, justify every step and write legibly. When you are done, scan, save the file as LASTNAME_FIRSTNAME_T2.pdf and email to dlabate@math.uh.edu or dlabate@uh.edu. NOTE: You need to send your email before 11:30AM on Feb 25 to receive credit.

- (1) [8 Pts]

(a) Compute the sine series of $f(x)=\sin x$, on the interval $0 \leq x \leq \pi$.
(b) Does the sine series of f converge uniformly to f in $[0, \pi]$? If not, where does it fail to converge? Justify.
(c) Without computing the Fourier coefficients, set up the computation of the cosine series of $f(x)=\sin x$, on the interval $0 \leq x \leq \pi$.
(d) Does the cosine series of f converge uniformly to f in $[0, \pi]$? If not, where does it fail to converge? Justify.
(a) $F(x)=\sum_{k=1}^{\infty} b_{k} \sin k x$
where
$b_{k}=\frac{2}{\pi} \int_{0}^{\pi} \sin x \sin k x d x=1$, if $k=1$ and $b_{k}=0$ if $k>1$ due to the orthogonality properties of the set $\sin k x$.

Thus the sine series of f is $F(x)=\sin x$
Note: there is no need to integrate as f is already in the form of a sine series.
(b) The sine series of f converge uniformly to f in $[0, \pi]$ since the 2π periodization of f is continuous.
(c) $F(x)=a_{o}+\sum_{k=1}^{\infty} a_{k} \cos k x$ where
$a_{0}=\frac{2}{\pi} \int_{0}^{\pi} \sin x d x$
and
$a_{k}=\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos k x d x$
(d) The cosine series of f converge uniformly to f in $[0, \pi]$ since the 2π periodization of f is continuous.

- (2) [8 Pts] Consider the function

$$
f(x)= \begin{cases}-1 & \text { if }-\pi \leq x \leq-\frac{\pi}{4} \\ 0 & \text { if }-\frac{\pi}{4}<x<\frac{\pi}{4} \\ 1 & \text { if } \quad \frac{\pi}{4} \leq x \leq \pi\end{cases}
$$

(a) Sketch the function.
(b) Compute the Fourier series of f, valid in the interval $[-\pi, \pi]$. (Hint: Take advantage of even/odd properties to reduce calculations.)
(c) Does the Fourier series converge to f uniformly on $[-\pi \leq x \leq \pi]$? If not, where does it fail to converge? Justify.
(a)

(b) The function f is odd. Thus

$$
F(x)=\sum_{k=1}^{\infty} b_{k} \sin k x
$$

where

$$
b_{k}=\frac{2}{\pi} \int_{\frac{\pi}{4}}^{\pi} \sin k x d x=\left.\frac{2}{k \pi}(\cos k x)\right|_{\frac{\pi}{4}} ^{\pi}=\frac{2}{k \pi}\left(\cos k \frac{\pi}{4}-\cos k \pi\right)
$$

(c) In the interval $[-\pi, \pi]$, the 2π periodization of f is discontinuous at $x= \pm \pi, \pm \frac{\pi}{4}$. Hence F does not converge uniformly to f. These 4 points of discontinuity are the points where F fails to converge to f.

- (3) [4 Pts]
(a) Compute the Fourier series of $f(x)=\sin ^{2} x$ valid in the interval $[-\pi, \pi]$
(b) Compute the Complex Fourier series of $f(x)=\sin ^{2} x$ valid in the interval $[-\pi, \pi]$ [Hint: there is no need of integration. You can derive it using the result of part (a).]
(a) Using the identity: $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x$, it follows that the Fourier series of f is

$$
F(x)=\frac{1}{2}-\frac{1}{2} \cos 2 x
$$

(b) Using Euler's formula $e^{i y}=\cos y+i \sin y$, we obtain that $\cos y=$ $\frac{e^{i y}+e^{-i y}}{2}$. Hence, from part (a) we have that

$$
F(x)=\frac{1}{2}-\frac{1}{2}\left(\frac{e^{i 2 x}+e^{-i 2 x}}{2}\right)=\frac{1}{2}-\frac{1}{4} e^{i 2 x}-\frac{1}{4} e^{-i 2 x}
$$

