## TEST \#2 - version 2

Please, show your work, justify every step and write legibly. When you are done, scan, save the file as LASTNAME_FIRSTNAME_T2.pdf and email to dlabate@math.uh.edu or dlabate@uh.edu. NOTE: You need to send your email before 11:30AM on March 25 to receive credit.

## - (1) [8 Pts]

(a) Compute the sine series of $f(x)=\sin x$, on the interval $0 \leq x \leq \pi$.
(b) Does the sine series of $f$ converge uniformly to $f$ in $[0, \pi]$ ? If not, where does it fail to converge? Justify.
(c) Without computing the Fourier coefficients, set up the computation of the cosine series of $f(x)=\sin x$, on the interval $0 \leq x \leq \pi$.
(d) Does the cosine series of $f$ converge uniformly to $f$ in $[0, \pi]$ ? If not, where does it fail to converge? Justify.

- (2) [8 Pts] Consider the function

$$
f(x)= \begin{cases}1 & \text { if }-\pi \leq x \leq-\frac{\pi}{4} \\ 0 & \text { if }-\frac{\pi}{4}<x<\frac{\pi}{4} \\ -1 & \text { if } \quad \frac{\pi}{4} \leq x \leq \pi\end{cases}
$$

(a) Sketch the function.
(b) Compute the Fourier series of $f$, valid in the interval $[-\pi, \pi]$. (Hint: Take advantage of even/odd properties to reduce calculations.)
(c) Does the Fourier series converge to $f$ uniformly on $[-\pi \leq x \leq \pi]$ ? If not, where does it fail to converge? Justify.

- (3) [4 Pts]
(a) Compute the Fourier series of $f(x)=\sin ^{2} x$ valid in the interval $[-\pi, \pi]$
(b) Compute the Complex Fourier series of $f(x)=\sin ^{2} x$ valid in the interval $[-\pi, \pi]$ [Hint: there is no need of integration. You can derive it using the result of part (a).]

