## TEST \#3 - version 1

Please, show your work, justify every step and write legibly. When you are done, scan, save the file as LASTNAME_FIRSTNAME_T3.pdf and email to dlabate@math.uh.edu or dlabate@uh.edu. NOTE: You need to send your email before 11:30AM on April 20 to receive credit.

- (1) [3 Pts] Let $A>0$ be a fixed number. Does the following functions define a causal filter? Justify your answer.
(a) $h_{1}(t)= \begin{cases}e^{A t} & \text { if } t<0 ; \\ e^{-A t} & \text { if } t \geq 0 .\end{cases}$
(b) $h_{2}(t)= \begin{cases}0 & \text { if } t<0 ; \\ e^{-A t} & \text { if } t \geq 0 .\end{cases}$
- (2) [9 Pts] Let $f(t)= \begin{cases}1 & \text { if }-\pi \leq t \leq \pi ; \\ 0 & \text { otherwise. }\end{cases}$

We found that its Fourier transform is $\hat{f}(\omega)=\sqrt{\frac{2}{\pi}} \frac{\sin (\pi \omega)}{\omega}$.
(a) Use the Fourier transform of $f$ and the properties of the Fourier transform to compute the Fourier transform $\hat{c}(\omega)$ of the function $c(t)=(f * f)(t)$
(b) Use the Fourier transform of $f$ and the properties of the Fourier transform to compute the Fourier transform of

$$
h(t)= \begin{cases}1 & \text { if }-1 \leq t \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(c) Use the Fourier transform of $h$ and the properties of the Fourier transform to compute the Fourier transform of

$$
g(t)= \begin{cases}t^{2} & \text { if }-1 \leq t \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- (3) $[6 \mathrm{Pts}]$ Let

$$
f(t)=\left\{\begin{array}{ll}
1 & 0 \leq t \leq 2 \\
0 & \text { otherwise } ;
\end{array} \quad g(t)= \begin{cases}t & 0 \leq t \leq 1 \\
0 & \text { otherwise }\end{cases}\right.
$$

(a) Compute $h(t)=(f * g)(t)$.
(b) Sketch the graph of $f, g, h$ over the interval $[-1,4]$.

