HW \#1

Please, write clearly and justify all your steps, to get proper credit for your work.
(1) [9 Pts] Let E be a subset of a metric space \mathbb{R}^{n}.
(i) E is sequentially compact if every sequence $\left\{x_{n}\right\}$ of points from E contains a convergent subsequence $\left\{x_{n_{k}}\right\}$ whose limit belongs to E.
(ii) E is complete if every Cauchy sequence in E converges to a point in E.
(iii) E is totally bounded if given any $r>0$ we can cover E by finitely many open balls of radius r. That is, for each $r>0$ there must exist finitely many points $x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$ such that

$$
E \subset \bigcup_{k=1}^{N} B\left(x_{k}, r\right) .
$$

Prove that the following are equivalent.
(a) E is compact.
(b) E is sequentially compact.
(c) E is complete and totally bounded.
[Hint. Prove $(a) \rightarrow(b),(b) \rightarrow(c),(c) \rightarrow(b)$, to prove $(b) \rightarrow(a)$ use (b) $\rightarrow(c)$.]
(2)[3 Pts] Solve Problem 35 (p.14) in Textbook.

