Name:

<u>Final Exam</u>

Note that you are supposed to work on your own for this assignment. Please, write clearly and justify all your steps, to get proper credit for your work.

(1)[7 Pts] Let f be a Lebesgue measurable function on \mathbb{R}^n . Define

$$\omega(t) = \lambda \{ x \in \mathbb{R}^n : |f(x)| > t \}, \quad t \ge 0.$$

Prove that

- (a) $\lim_{s\to t^+} \omega(s) = \omega(t)$, for each $t \ge 0$.
- (b) If $f \in L^1(\mathbb{R}^n)$, then $\lim_{s \to t^-} \omega(s) = \lambda \{x \in \mathbb{R}^n : |f(x)| \ge t\}$, for each $t \ge 0$.
- (c) Note that $\omega(t)$ is not continuous. In fact, you can find an example of an $f \in L^1(\mathbb{R})$ such that $\lim_{s \to t^+} \omega(s) = \omega(t)$ but $\lim_{s \to t^-} \omega(s) \neq \omega(t)$
- (d) We have that

$$\int_0^\infty \omega(t) \, dt = \int_{\mathbb{R}^n} |f(x)| \, dx,$$

so that $f \in L^1(\mathbb{R}^n)$ if and only if $\omega \in L^1(\mathbb{R})$.

(2)[3 Pts] Let $E \subset \mathbb{R}^n$ be a Lebesgue measurable set and let (f_k) be a sequence of non-negative Lebesgue measurable functions on E satisfying $\lim f_k = f$ a.e.

(a) Show that if $\int_E f d\lambda < \infty$ and

$$\lim_{k} \int_{E} f_{k} \, d\lambda = \int_{E} f \, d\lambda,$$

then

$$\lim_{k} \int_{A} f_{k} \, d\lambda = \int_{A} f \, d\lambda,$$

for every Lebesgue measurable set $A \subset E$.

(b) Show that the statement above can fail if $\int_E f d\lambda = \infty$.

(3)[3 Pts] Let $f \in L^1(\mathbb{R})$. Show that the integral

$$F(x) = \int_0^x f(t) dt, \quad x \in \mathbb{R},$$

is uniformly continuous on \mathbb{R} .

(4)[6 Pts] Prove each the following statements or disprove it by producing a counterexample.

- (a) If $f \in C_0(\mathbb{R})$ (i.e., f is continuous and vanish at $\pm \infty$) then $f \in L^1(\mathbb{R})$.
- (b) If $f \in L^1(\mathbb{R})$ is uniformly continuous, then $\lim_{x\to\infty} f(x)$ exists and is equal to 0.
- (c) If $f \in L^1(\mathbb{R})$ and $\lim_{x\to\infty} f(x) = a$, then a = 0.
- (d) If $f \in L^1([0,1])$ then

$$\lim_{n \to \infty} \int_0^1 x^n f(x) \, dx = 0.$$