Math 6321 – Spring 2013

Name:

HW #3

Please, write clearly and justify all your steps, to get proper credit for your work.

(1) [3 Pts] Let $f_a = f * \phi_a$, where $f \in L^{\infty}(\mathbb{R}^n)$, $\phi \in L^1(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} \phi = 1$ and $\phi_a(x) = a^{-n}\phi(\frac{x}{a})$. Prove that $\lim_{a\to 0} |f_a(x) - f(x)| = 0$ at every point of continuity of f.

(2) [3 Pts] Let $\phi(x) = \frac{1}{\pi} \left(\frac{\sin x}{x}\right)^2$, where $x \in \mathbb{R}$. Let $\phi_a(x) = a^{-n}\phi(\frac{x}{a})$. Prove that, if $f \in L^1(\mathbb{R})$ and if f is continuous at x, then

$$\lim_{a \to 0} f * \phi_a(x) = f(x).$$

(3) [4 Pts] Let H be a Hilbert space and $M \subset H$ be a subspace. The orthogonal complement of M is the set

$$M^{\perp} \{ x \in H : \langle x, y \rangle = 0, \ y \in M \}.$$

- (1) Prove that M^{\perp} is a closed subspace of H.
- (2) Let M be the set of all even functions in $L^2(\mathbb{R})$. Show that M is a closed subspace of $L^2(\mathbb{R})$, and its orthogonal complement is the set of odd functions in $L^2(\mathbb{R})$.
 - (4) [3 Pts] Solve Problem 12 from Chapter 12.
 - (5) [3 Pts] Solve Problem 16 from Chapter 12.