## Homework \#1

Please, write clearly and justify your work to receive credit.
(1) [6 Pts] The following problem is about calculating the number of parameters of a feedforward neural network.
(a) Derive a formula to compute the number of parameters between 2 (fully connected) layers of a feedforward neural network where the first layer has $N_{\ell}$ neurons and the second layer has $N_{\ell+1}$ neurons.
(b) Determine the number of parameters of a feedforward neural network with the following architecture:

- Input layer: 3 neurons.
- Hidden layer 1: 12 neurons.
- Hidden layer 2: 8 neurons.
- Hidden layer 3: 4 neurons.
- Output layer: 2 neurons.
(c) Design a feedforward neural network with input dimension 2, output dimension 1 and at least 2 hidden layers which contains at least 400 but no more than 405 parameters.

Solution:
(a) The number of parameters between 2 fully connected layers is

$$
\left(N_{\ell}+1\right) N_{\ell+1}
$$

where the +1 term in the equation takes into account the bias terms.
(b) Using the formula above we have

$$
\text { Total parameters }=4 * 12+13 * 8+9 * 4+5 * 2=198
$$

(c) There are many possible solutions. We can choose a MLP with 10 hidden layers of width 6 . Then, since input dimension is 2 and output dimension is 1 , we have

$$
\text { Total parameters }=3 * 6+9 *(7 * 6)+7 * 1=403
$$

(2) [6 Pts] This problem is about using ReLU feedforward neural networks to implement piecewise linear functions.
(a) Design a shallow neural network with ReLU activation function implementing the following function
$T(x)=\left\{\begin{array}{ll}3 x & \text { if } 0 \leq x<\frac{1}{3} \\ \frac{3}{2}(1-x) & \text { if } \frac{1}{3} \leq x \leq 1\end{array} \quad x \in[0,1]\right.$,
(b) Design a shallow neural network with ReLU activation function implementing a piecewise linear function on $\mathbb{R}$ with 2 nodes, that is, a piecewise linear function that changes slope exactly 3 times.
(c) Derive a formula relating the number of parameters $M$ of a shallow neural network with ReLU activation function implementing a piecewise linear function on $\mathbb{R}$ to the number of nodes $K$ of the function.

Solution:
(a) Similar to the example presented in class, we can write the function $T$ in $[0,1]$ as

$$
T(x)=3(x-0)_{+}-\frac{9}{2}\left(x-\frac{1}{3}\right)_{+}
$$

This shows that the shallow neural network implementing $T$ has coefficients

$$
a_{21}=3, a_{11}=1, a_{22}=-9 / 2, a_{12}=1, b_{11}=b_{2}=0, b_{12}=-1 / 3
$$

(b) Modifying the example above, we write the function $T_{0}$ in $[0,1]$ as

$$
T_{0}(x)=3(x-0)_{+}-\frac{9}{2}\left(x-\frac{1}{3}\right)_{+}+3\left(x-\frac{2}{3}\right)_{+}
$$

This is a piecewise linear function that changes slope exactly 3 times.
Clearly this $T_{0}$ is implemented by a shallow neural network with 3 neurons.
(c) The examples above show that to implement a piecewise linear function

- with 1 node you need 5 parameters $\left(b_{2} \neq 0\right.$, in general)
- with 2 nodes you need 7 parameters ( $b_{2} \neq 0$, in general)
- with 3 nodes you need 9 parameters ( $b_{2} \neq 0$, in general)
- with $K$ nodes you need $2(K+1)+1$ parameters

