QUIZ \#1

(1) $[6 \mathrm{Pts}]$
(a) Determine the number of parameters of a feedforward neural network with the following architecture:

- Input layer: 2 neurons.
- 11 Hidden layers: 9 neurons each layer.
- Output layer: 1 neurons.
(b) Modify the network architecture above by changing the number of hidden layers to obtain a feedforward neural network containing at least 390 but no more than 410 parameters.

Solution:

(b) Since each pair of layers contributes $\left(N_{\ell}+1\right) * N_{\ell+1}$ parameters, observing that 11 hidden layers create 10 pairs of hidden layers, we have

$$
\text { Total parameters }=3 * 9+10(10 * 9)+10 * 1=937
$$

(c) We choose 5 hidden layers. Then we have

$$
\text { Total parameters }=3 * 9+4 *(10 * 9)+10 * 1=397
$$

(2) $[4 \mathrm{Pts}]$ In class I have shown that a shallow neural network with ReLU activation function implementing the following function

$$
T(x)=\left\{\begin{array}{ll}
2 x & \text { if } 0 \leq x<\frac{1}{2} \\
2(1-x) & \text { if } \frac{1}{2} \leq x \leq 1
\end{array} \quad x \in[0,1]\right.
$$

is obtained by writing as $T(x)=2(x-0)_{+}-4\left(x-\frac{1}{2}\right)_{+}$which gives the architecture below

Modifying the example above write networks implementing the functions below

Solution:

The function T_{1} is obtained by adding $1 / 2$ to the function T

$$
T_{1}(x)=T(x)+1 / 2
$$

Hence the only change to the original NN needed to generate the new NN implementation is the last bias at the output layer, which must be $1 / 2$ (it was 0 for T).

For the function T_{2}, the slope of the first linear component is now 3 rather than 2. For the second linear component, the slope is $\mathbf{- 3}$, hence we need to set the coefficient -6 to compensate for the first linear component. Hence:

$$
T_{2}(x)=3(x-0)_{+}-6\left(x-\frac{1}{2}\right)_{+}
$$

An alternative argument to determine the coefficient of the second component is to impose the condition $T_{2}(1)=0$. Hence the changes to the original NN needed to generate the new NN implementation are the wights to the output layer, which must be 3 and -6, where in T is was 2 and -4 , respectively.

