HW \#1

Please, write clearly and justify your arguments to get credit for your work.
(1) [1 Pts] Show that the Triangle Inequality implies

$$
|d(x, y)-d(z, w)| \leq d(x, z)+d(y, w)
$$

(2)[2 Pts] Find a sequence which converges to 0 but is not in any space ℓ^{p}, where $1 \leq p<\infty$.
(3)[3 Pts] Let $p \geq 1$. Is it true that $\ell^{p} \subset \ell^{p+1}$? Or that $\ell^{p+1} \subset \ell^{p}$? Justify your answers.
(4) [4 Pts] Let (X, d) be a metric space. The diameter $\delta(A)$ of a nonempty set $A \subset X$ is defined by

$$
\delta(A)=\sup _{x, y \in A} d(x, y)
$$

A is said to be bounded if $\delta(A)<\infty$.
(a) Show that $A \subset B$ implies that $\delta(A) \leq \delta(B)$.
(b) Show that the union of two bounded subsets of X is a bounded set.

