
MATH 6397 - Mathematics of Data Science

Instructor: Demetrio Labate

February 8, 2023

Part II

Mathematics of Data Science

Supervised Learning
In the classical supervised learning problem, the main objective is
to write an algorithm that is able to learn a pattern from a series
of examples, as a human being might learn it.

The specific goal is to acquire the ability to identify the class to
which each element of a set belongs from a finite number of
possibilities (classification problem), e.g., cats vs dog, or to
assign each element to a value from a continuous range
(regression problem).

Supervised Learning

More formally, the problem is to approximate an unknown
function F ∗ that maps any element (input vector) x of an input
space X either (classification task) to its corresponding label y
from a finite dimensional output space Y or (regression) to a
continuous range of values y ∈ Y .

For simplicity, I will focus now on the classification task.

In this situation, we have access to a set of points, the training
set:

D = {(xi , yi) : i = 1, . . . ,N}, where yi = F ∗(xi).

The goal is to obtain a good approximation of F ∗ that can
accurately predict the unknown label of any new input point.

Supervised Learning

To process to construct a predictive model F̂ is a called the
learning process.

Where shall we look for it?
We will limit the search for F̂ to a fixed parameterized class of
functions called the hypothesis space H.

How can we select F̂ among all the functions in the hypothesis
space?
Ideally, the best possible predictor in Hθ would be obtained
through population risk minimization.

In practice, there is no prior knowledge of the population, so the
best possible predictor is constructed through the so-called
empirical risk minimization.

Supervised Learning

Approximation error: distance separating the true solution F ∗ from the
hypothesis space H
Generalization error: due to the finiteness of the training set causing by
the difference between population and empirical risk minimization.

Optimization error: distance from F̂ to the predictor that we obtain

when we stop running the algorithm.

Supervised Learning and function spaces

Moral of the story:

▶ Supervised learning aims at learning a function. Usually a
high-dimensional function.

▶ The choice of the hypothesis space is critical to ensure we can
compute a satisfactory predictive (or regression) model.

▶ The algorithm we select to approximate functions in the
hypothesis space must be numerically efficient.

Neural Networks

Neural Networks

A neural network is an algorithm for processing an input x ∈ RD

and returning an output in Rk .

Unlike the classical transformations used in traditional signal
processing which are defined by it linear superposition, neural
networks are defined by composition.

The process alternates between two simple steps:

1. an affine linear transformation, that is, a map of the form

x 7→ Ax + b

2. a non-linear transformation ρ applied coordinate-wise.

Neural Networks

A neural network processes information as follows:

1. Denote the input as
x̂0 = x

2. For 1 ≤ ℓ ≤ L, set

xℓ = Aℓx̂ℓ−1 + bℓ, x̂ℓ = ρ(xℓ)

3. The output is
Φ(x) = xL

The values xℓ, 1 ≤ ℓ ≤ L− 1 which are not seen by a user are the
hidden layers or latent variables of the neural network.

Remark

In practical applications, the weight matrices Aℓ and the biases bℓ

of the neural networks are learned during an appropriate training
process. We do ignore the training process for now.

Neural Networks

A particularly simple case is a neural network with only one hidden
layer. This is called a shallow neural network

In this case, we take a linear map of the input, apply a nonlinear
transformation ρ once, and apply another linear map:

Φ(x) = A2(ρ(A1x + b1)) + b2

This can be written more compactly as

Φ(x) =
n∑

i=1

ai ρ(w
t
i x + bi) + c

The bias c in the last layer is often omitted.

Neural Networks

More generally, a neural networks may have multiple layers,
including several inner layers

Φ(x) = A4ρ(A3ρ(A2ρ(A1x + b1) + b2) + b3) + b4

Here we have a neural network with 4 layers.

Clearly, for the function to be well defined, the dimensions of
x ∈ RD , the vectors bi and the matrices Ai must be matched.

Function classes of Neural Networks

Graphical representation of a neural network with input x ∈ R2,
output Φ(x) ∈ R and 4 layers (L = 4).

Function classes of Neural Networks

Neural networks produce structured parametric families of
functions of the form

Φ(x) = W L ◦ ρ ◦W L−1 ◦ . . . ρ ◦W 1(x), x ∈ RD

where

▶ W ℓ(x) = Aℓx + bℓ, ℓ = 1, . . . , L

▶ Aℓ ∈ RNℓ×Nℓ−1 are the filters and bℓ ∈ RNℓ are the biases

▶ ρ : R→ R is the activation function

▶ L(Φ) is the number of layers of Φ

▶ Nℓ ∈ N, i = ℓ, . . . , L is the width of the ℓ-th layer, N0 = D,
and N(Φ) =

∑L
i=0Ni is the number of neurons of Φ

▶ M(Φ) =
∑L

ℓ=1 ||Aℓ||0 + ||bℓ||0 is the number of weights (or
parameters) of Φ

Function classes of Neural Networks

Neural networks produce structured parametric families of
functions of the form

Φ(x) = W L ◦ ρ ◦W L−1 ◦ . . . ρ ◦W 1(x), x ∈ RD

where

▶ W ℓ(x) = Aℓx + bℓ, ℓ = 1, . . . , L

▶ Aℓ ∈ RNℓ×Nℓ−1 are the filters and bℓ ∈ RNℓ are the biases

▶ ρ : R→ R is the activation function

▶ L(Φ) is the number of layers of Φ

▶ Nℓ ∈ N, i = ℓ, . . . , L is the width of the ℓ-th layer, N0 = D,
and N(Φ) =

∑L
i=0Ni is the number of neurons of Φ

▶ M(Φ) =
∑L

ℓ=1 ||Aℓ||0 + ||bℓ||0 is the number of weights (or
parameters) of Φ

Function classes of Neural Networks

Graph representation

▶ Number of layers L = 4

▶ Number of neurons N = 15

▶ Number of weights M =
∑4

ℓ=1 ||Aℓ||0 + ||bℓ||0 = 44 + 12 = 56

Φ(x) = W 4(ρW 3(ρW 2(ρW 1(x))))

Function classes of Neural Networks

Graph representation

▶ Number of layers L = 4

▶ Number of neurons N = 15

▶ Number of weights M =
∑4

ℓ=1 ||Aℓ||0 + ||bℓ||0 = 44 + 12 = 56

Φ(x) = W 4(ρW 3(ρW 2(ρW 1(x))))

Function classes of Neural Networks

Graph representation

▶ Number of layers L = 4

▶ Number of neurons N = 15

▶ Number of weights M =
∑4

ℓ=1 ||Aℓ||0 + ||bℓ||0 = 44 + 12 = 56

Φ(x) = W 4(ρW 3(ρW 2(ρW 1(x))))

Function classes of Neural Networks

Graph representation

▶ Number of layers L = 4

▶ Number of neurons N = 15

▶ Number of weights M =
∑4

ℓ=1 ||Aℓ||0 + ||bℓ||0 = 44 + 12 = 56

Φ(x) = W 4(ρW 3(ρW 2(ρW 1(x))))

Function classes of Neural Networks
Assumption: We do identify a neural network with the function
implemented by the neural network

In fact, multiple graph representations may realize the same
function. So, some authors distinguish a neural network from its
realization.

Definition

For a tuple (M0, L0,B0), where M0, L0 ∈ N ∪ {∞} and B0 > 0,
F(M0, L0,B0) denotes the function class of neural networks with
number of weights M0, number of layers L0 and with scale B0:

F(M0, L0,B0)

=
{
Φ: [0, 1]D → RNL : L(Φ) ≤ L0,M(Φ) ≤ M0,B(Φ) ≤ B0

}
where B(Φ) = maxℓ{||vec(Aℓ)||∞, ||bℓ||∞} is the scale of the
weights of Φ

Function classes of Neural Networks
Assumption: We do identify a neural network with the function
implemented by the neural network

In fact, multiple graph representations may realize the same
function. So, some authors distinguish a neural network from its
realization.

Definition

For a tuple (M0, L0,B0), where M0, L0 ∈ N ∪ {∞} and B0 > 0,
F(M0, L0,B0) denotes the function class of neural networks with
number of weights M0, number of layers L0 and with scale B0:

F(M0, L0,B0)

=
{
Φ: [0, 1]D → RNL : L(Φ) ≤ L0,M(Φ) ≤ M0,B(Φ) ≤ B0

}
where B(Φ) = maxℓ{||vec(Aℓ)||∞, ||bℓ||∞} is the scale of the
weights of Φ

Function classes of Neural Networks

Examples of activation functions:

▶ Sigmoid: ρ(x) = 1
1+e−x

▶ Rectified linear unit (ReLU): ρ(x) = max{x , 0}

• ReLU is most commonly used in applications

Function classes of Neural Networks

Examples of activation functions:

▶ Sigmoid: ρ(x) = 1
1+e−x

▶ Rectified linear unit (ReLU): ρ(x) = max{x , 0}

• ReLU is most commonly used in applications

Function classes of Neural Networks

Examples of activation functions:

▶ Sigmoid: ρ(x) = 1
1+e−x

▶ Rectified linear unit (ReLU): ρ(x) = max{x , 0}

• ReLU is most commonly used in applications

Approximations using Neural Networks

Approximation theorems have been used to derive approximation
estimates in neural networks and to quantify their expressive power.

We start with an elementary construction in the univariate case.

Proposition

Assume f : [0, 1]→ R is B-Lipschitz. For any ϵ > 0 there is a
2-layer neural network Φ with threshold nonlinearities z → χ[z≥0]

so that
sup

x∈[0,1]
|f (x)− Φ(x)| < ϵ.

This neural networks has ⌈Bϵ ⌉ weights.

Approximations using Neural Networks

Approximation theorems have been used to derive approximation
estimates in neural networks and to quantify their expressive power.

We start with an elementary construction in the univariate case.

Proposition

Assume f : [0, 1]→ R is B-Lipschitz. For any ϵ > 0 there is a
2-layer neural network Φ with threshold nonlinearities z → χ[z≥0]

so that
sup

x∈[0,1]
|f (x)− Φ(x)| < ϵ.

This neural networks has ⌈Bϵ ⌉ weights.

Approximations using Neural Networks

Approximation theorems have been used to derive approximation
estimates in neural networks and to quantify their expressive power.

We start with an elementary construction in the univariate case.

Proposition

Assume f : [0, 1]→ R is B-Lipschitz. For any ϵ > 0 there is a
2-layer neural network Φ with threshold nonlinearities z → χ[z≥0]

so that
sup

x∈[0,1]
|f (x)− Φ(x)| < ϵ.

This neural networks has ⌈Bϵ ⌉ weights.

Approximations using Neural Networks

Proof. Define m = ⌈Bϵ ⌉ and for i = 0, . . . ,m − 1, set

a0 = f (0), ai = f (bi)− f (bi−1), with bi = iϵ/B

We next define

Φ(x) =
m−1∑
i=0

ai χ[xi≥bi](x)

This is a neural network with L = 2 layers and m weights.

Approximations using Neural Networks

For any x ∈ [0, 1], letting k to be the largest index such that
bk ≤ x , then f is constant on [bk , x].
Hence we have

|f (x)− Φ(x)| ≤ |f (x)− f (bk)|+ |f (bk)− Φ(bk)|+ |Φ(bk)− Φ(x))|

≤ B|x − bk |+ |f (bk)−
k∑

i=0

ai |+ 0

≤ B
ϵ

B
+ |f (bk)− a0 −

k∑
i=1

ai |

= ϵ+ |f (bk)− f (b0)−
k∑

i=1

(f (bi)− f (bi−1))|

= ϵ

Approximations using Neural Networks
One can extend the constructive argument of the univariate case
to the multivariate case. Even though it is more complicate now to
localize the function properties, one can prove the following result.

Proposition

Assume f : [0, 1]D → R is B-Lipschitz. For any ϵ > 0 there is a
3-layer neural network Φ with ReLU activation functions so that∫

x∈[0,1]D
|f (x)− Φ(x)| < ϵ.

This neural networks has O((Bϵ)
D) weights.

Remark. This result suffers from the curse of dimension, as the
number of weights scaled exponentially with D. In addition, the
error is measured in the L1 norm rather than uniformly.

Stronger results have been derived using non-constructive
arguments.

Approximations using Neural Networks
One can extend the constructive argument of the univariate case
to the multivariate case. Even though it is more complicate now to
localize the function properties, one can prove the following result.

Proposition

Assume f : [0, 1]D → R is B-Lipschitz. For any ϵ > 0 there is a
3-layer neural network Φ with ReLU activation functions so that∫

x∈[0,1]D
|f (x)− Φ(x)| < ϵ.

This neural networks has O((Bϵ)
D) weights.

Remark. This result suffers from the curse of dimension, as the
number of weights scaled exponentially with D. In addition, the
error is measured in the L1 norm rather than uniformly.

Stronger results have been derived using non-constructive
arguments.

Approximations using Neural Networks
One can extend the constructive argument of the univariate case
to the multivariate case. Even though it is more complicate now to
localize the function properties, one can prove the following result.

Proposition

Assume f : [0, 1]D → R is B-Lipschitz. For any ϵ > 0 there is a
3-layer neural network Φ with ReLU activation functions so that∫

x∈[0,1]D
|f (x)− Φ(x)| < ϵ.

This neural networks has O((Bϵ)
D) weights.

Remark. This result suffers from the curse of dimension, as the
number of weights scaled exponentially with D. In addition, the
error is measured in the L1 norm rather than uniformly.

Stronger results have been derived using non-constructive
arguments.

Approximations using Neural Networks

Universal approximation theorems have historically been used as
a justification of the expressive power of neural networks.

Definition.

A class of functions F is called a universal approximator over a
compact set S if, for every continuous function g and target
accuracy ϵ > 0, there exists f ∈ F such that

sup
x∈S
|f (x)− g(x)| < ϵ.

Remarks:

▶ Typically one chooses S = [0, 1]D since this set can be
rescaled.

▶ Compactness is necessary. For instance, one can show that we
need infinitely many ReLUs to approximate the ”sin” function
uniformly over R.

Approximations using Neural Networks

Observation:

▶ The classical Weierstrass theorem (Weierstrass 1885)
establishes that polynomials are universal approximators.

▶ The Stone-Weierstrass theorem extends the original
Weierstrass theorem:

Theorem

Let F be a collection of functions such that

1. each f ∈ F is continuous;
2. for every x , there exist f ∈ F such that f (x) ̸= 0;
3. for every x ̸= x ′, there exist f ∈ F such that f (x) ̸= f (x ′) (F

separates points);
4. F is closed under multiplication and vector space operations (F is

an algebra).

Then F is a universal approximator over [0, 1]D .

Note: The second and third conditions in the Stone-Weierstrass
theorem are necessary.

Universal Approximation Theorems

Theorem [Cybenko, 1989]

Assume ρ is a sigmoidal activation function. Then the class of
shallow neural networks F(M, L = 2,B) is a universal
approximator over [0, 1]D . That is, for every f ∈ C ([0, 1]D), given
ϵ > 0, there exists Φ ∈ F(M, L = 2,B), such that

|Φ(x)− f (x)| < ϵ, for any x ∈ [0, 1]D

Note: number of weights M(Φ) (⇒ number of neurons N2(Φ))
can become arbitrarily large.

Universal Approximation Theorems

Theorem [Cybenko, 1989]

Assume ρ is a sigmoidal activation function. Then the class of
shallow neural networks F(M, L = 2,B) is a universal
approximator over [0, 1]D . That is, for every f ∈ C ([0, 1]D), given
ϵ > 0, there exists Φ ∈ F(M, L = 2,B), such that

|Φ(x)− f (x)| < ϵ, for any x ∈ [0, 1]D

Note: number of weights M(Φ) (⇒ number of neurons N2(Φ))
can become arbitrarily large.

Universal Approximation Theorems

Idea of the proof:

▶ F(M, L = 2,B) ⊂ C ([0, 1]D) is a linear subspace

▶ Arguing by contradiction, suppose F(M, L = 2,B) not dense

▶ By Hahn-Banach Theorem., there exists a signed Radon
measure µ such that

∫
[0,1]D Φ(x) dµ(x) = 0 for all

Φ ∈ F(M, L = 2,B).

▶ The functions ρ(ax + b) belong to Φ ∈ F(M, L = 2,B) for
any a ∈ RD , b ∈ R.

▶ Contradiction follows since ρ is discriminatory, i.e., the only
Radom measure µ for which

∫
[0,1]D ρ(ax + b) dµ(x) = 0,

a ∈ RD , b ∈ R, is the zero measure.

Universal Approximation Theorems

Idea of the proof:

▶ F(M, L = 2,B) ⊂ C ([0, 1]D) is a linear subspace

▶ Arguing by contradiction, suppose F(M, L = 2,B) not dense

▶ By Hahn-Banach Theorem., there exists a signed Radon
measure µ such that

∫
[0,1]D Φ(x) dµ(x) = 0 for all

Φ ∈ F(M, L = 2,B).

▶ The functions ρ(ax + b) belong to Φ ∈ F(M, L = 2,B) for
any a ∈ RD , b ∈ R.

▶ Contradiction follows since ρ is discriminatory, i.e., the only
Radom measure µ for which

∫
[0,1]D ρ(ax + b) dµ(x) = 0,

a ∈ RD , b ∈ R, is the zero measure.

Universal Approximation Theorems

Idea of the proof:

▶ F(M, L = 2,B) ⊂ C ([0, 1]D) is a linear subspace

▶ Arguing by contradiction, suppose F(M, L = 2,B) not dense

▶ By Hahn-Banach Theorem., there exists a signed Radon
measure µ such that

∫
[0,1]D Φ(x) dµ(x) = 0 for all

Φ ∈ F(M, L = 2,B).

▶ The functions ρ(ax + b) belong to Φ ∈ F(M, L = 2,B) for
any a ∈ RD , b ∈ R.

▶ Contradiction follows since ρ is discriminatory, i.e., the only
Radom measure µ for which

∫
[0,1]D ρ(ax + b) dµ(x) = 0,

a ∈ RD , b ∈ R, is the zero measure.

Universal Approximation Theorems

Idea of the proof:

▶ F(M, L = 2,B) ⊂ C ([0, 1]D) is a linear subspace

▶ Arguing by contradiction, suppose F(M, L = 2,B) not dense

▶ By Hahn-Banach Theorem., there exists a signed Radon
measure µ such that

∫
[0,1]D Φ(x) dµ(x) = 0 for all

Φ ∈ F(M, L = 2,B).

▶ The functions ρ(ax + b) belong to Φ ∈ F(M, L = 2,B) for
any a ∈ RD , b ∈ R.

▶ Contradiction follows since ρ is discriminatory, i.e., the only
Radom measure µ for which

∫
[0,1]D ρ(ax + b) dµ(x) = 0,

a ∈ RD , b ∈ R, is the zero measure.

Universal Approximation Theorems

Idea of the proof:

▶ F(M, L = 2,B) ⊂ C ([0, 1]D) is a linear subspace

▶ Arguing by contradiction, suppose F(M, L = 2,B) not dense

▶ By Hahn-Banach Theorem., there exists a signed Radon
measure µ such that

∫
[0,1]D Φ(x) dµ(x) = 0 for all

Φ ∈ F(M, L = 2,B).

▶ The functions ρ(ax + b) belong to Φ ∈ F(M, L = 2,B) for
any a ∈ RD , b ∈ R.

▶ Contradiction follows since ρ is discriminatory, i.e., the only
Radom measure µ for which

∫
[0,1]D ρ(ax + b) dµ(x) = 0,

a ∈ RD , b ∈ R, is the zero measure.

Universal Approximation Theorems

Idea of the proof:

▶ F(M, L = 2,B) ⊂ C ([0, 1]D) is a linear subspace

▶ Arguing by contradiction, suppose F(M, L = 2,B) not dense

▶ By Hahn-Banach Theorem., there exists a signed Radon
measure µ such that

∫
[0,1]D Φ(x) dµ(x) = 0 for all

Φ ∈ F(M, L = 2,B).

▶ The functions ρ(ax + b) belong to Φ ∈ F(M, L = 2,B) for
any a ∈ RD , b ∈ R.

▶ Contradiction follows since ρ is discriminatory, i.e., the only
Radom measure µ for which

∫
[0,1]D ρ(ax + b) dµ(x) = 0,

a ∈ RD , b ∈ R, is the zero measure.

Universal Approximation Theorems

The universal approximation property extends to a much larger
class of activation functions.

Theorem (Hornik, 1991)

Assume ρ is a C∞ non-polynomial activation function. Then the
class of shallow neural networks F(M, L = 2,B) is a universal
approximator over [0, 1]D .

Theorem (Pinkus, 1999)

Let ρ be a continuous activation function. The class of shallow
neural networks F(M, L = 2,B) is a universal approximator over
[0, 1]D if and only if ρ is non-polynomial.

Note. Also in this case, the number weights M(Φ) and number of
neurons N2 of the approximating network Φ can become arbitrarily
large.

Universal Approximation Theorems

Sketch of the proof [Hornik, 1991]:

▶ Since ρ is a C∞ non-polynomial activation function, for any
k ∈ N0 := N ∪ {0} there is xk such that ρ(k)(xk) ̸= 0.

▶ Recall that the derivative function can be expressed as the
limit of difference quotients

g (k)(x) = lim
h→0

1

hk

k∑
i=0

(
k

i

)
(−1)k−ig(x + ih)

with uniform convergence.

▶ By the last observation, we can uniformly approximate the
monomial

xk =
1

ρ(k)(xk)

dk

dtk

∣∣∣
t=0

ρ(xk + tx)

using a neural network Φ ∈ F(M, L = 2,B).

Universal Approximation Theorems

Sketch of the proof [Hornik, 1991]:

▶ Since ρ is a C∞ non-polynomial activation function, for any
k ∈ N0 := N ∪ {0} there is xk such that ρ(k)(xk) ̸= 0.

▶ Recall that the derivative function can be expressed as the
limit of difference quotients

g (k)(x) = lim
h→0

1

hk

k∑
i=0

(
k

i

)
(−1)k−ig(x + ih)

with uniform convergence.

▶ By the last observation, we can uniformly approximate the
monomial

xk =
1

ρ(k)(xk)

dk

dtk

∣∣∣
t=0

ρ(xk + tx)

using a neural network Φ ∈ F(M, L = 2,B).

Universal Approximation Theorems

Sketch of the proof (continued):

▶ Similarly, for any v ∈ RD , we can approximate the function
x → ⟨x , v⟩k using a neural network Φ ∈ F(M, L = 2,B).

▶ It follows from the last two observations that, for any
(i1, . . . , iD) ∈ ND

0 , we can uniformly approximate the
monomial

x i11 . . . x iDD =
∂i1+···+iD

∂t i11 . . . ∂t iDD
(t1x1 + · · ·+ tDxD)

i1+···+iD

using a neural network Φ ∈ F(M, L = 2,B).

▶ By linearity, we can approximate every polynomial using a
neural network Φ ∈ F(M, L = 2,B).

▶ The proof now follows by the Stone-Weierstrass Theorem.

Universal Approximation Theorems

The theorem we proved states that shallow neural networks (with
non-polynomial activation function) can approximate exactly the
same functions as polynomials.

We already know by of the Stone-Weierstrass theorem that
polynomials are universal approximators.

The result is, in some sense, disappointing. If polynomials can
approximate everything, why use neural networks? If shallow
networks can approximate everything, why use deep networks?

We will argue further below that approximations by neural networks
can be advantageous in terms of computational complexity.

Universal Approximation Theorems
As we observed in the constructive arguments, for a B-Lipschitz
function f , we need a neural network with M = ⌈Bϵ ⌉ weights to
approximate f with ϵ accuracy. Equivalently, there is a shallow
network Φ such that, for some constant C > 0, we have

max
x∈[0,1]

|f (x)− Φ(x)| ≤ C M−1

In dimension D, as suggested by the extension of the constructive
approach and proved rigorously by [Mhaskar 1996], we can
similarly find a shallow network Φ such that

max
x∈[0,1]

|f (x)− Φ(x)| ≤ C M−1/D .

Decay rate is increasingly slower with larger dimension D.

▶ Manifestation of the curse of dimensionality.
cf. [Bellman R.E. Adaptive Control Processes. Princeton University

Press, Princeton, NJ, 1961.]

Universal Approximation Theorems

The curse of dimensionality phenomenon appears in classical
approximations

Number of cells needed to partition [0, 1]D grows exponentially
with D.

Need ϵ−D points to partition [0, 1]D with uniform ϵ-size grid.
Equivalently, N points result in a grid with partition width N−1/D

Barron spaces

Approximations with Neural Networks
In some cases, shallow networks can do better than classical
approximation methods which are linear in the parameters.

Theorem [Maurey-Barron-Jones]

Let H be a pre-Hilbert space, R, ϵ > 0, and A ⊂ H be such that
∥h∥ ≤ R for all h ∈ A. For any m ∈ N and any f ∈ conv(A), there
exist m triples (ai ,wi , bi) ∈ C× RD × R such that

∥f − 1

m

m∑
i=1

ai ρ(w
t
i x + bi)∥L2 ≤

R + ϵ√
m

= (R + ϵ)m−1/2.

By contrast, if Vm is an m-dimensional linear function space

sup{min
v∈Vm

∥f − v∥L2 : f ∈ conv(A)} ≥ e

4D
m−1/D .

That is, the approximation rate of f ∈ conv(A) using a shallow
network is independent of the dimension D.

Approximations with Neural Networks

The proof of first statement follows from the following lemma.

Lemma [Maurey-Barron-Jones]. Let H be a pre-Hilbert space,
R, ϵ > 0, and A ⊂ H be such that ∥h∥ ≤ R for all h ∈ A. For any
m ∈ N, if g ∈ conv(A) there exist h1, . . . , hm ∈ A such that

∥g − 1

m

m∑
i=1

hi∥ ≤
R√
m

+ ϵ.

Proof. By the hypothesis on g , given ϵ > 0, there exists
M = M(ϵ) points h1, . . . , hM ∈ A and λ1, . . . , λM ∈ [0, 1] such that

∥h −
M∑
i=1

λihi∥ ≤ ϵ,

M∑
i=1

λi = 1.

Set h̃ :=
∑M

i=1 λihi and choose m indices from {1, . . . ,M}
independently according to the distribution for which p(i) = λi .

Approximations with Neural Networks
Then, using the observations that h̃ = Eαhi(α) and that i(α) and
i(β) are independent for α ̸= β, we have that

Eα∥h̃ − 1
m

m∑
α=1

hi(α)∥2 = Eα,β

〈
h̃ − 1

m

m∑
α=1

hi(α), h̃ − 1
m

m∑
β=1

hi(β)

〉

= 1
m2

m∑
α,β=1

Eα,β[⟨h̃ − hi(α), h̃ − hi(β)⟩]

= 1
m2

m∑
α=1

Eα[⟨h̃ − hi(α), h̃ − hi(α)⟩]

= 1
mEα[∥h̃ − hi(α)∥2] ≤ R2

m .

In particular, there must be i1, . . . , im ⊂ {1, . . . ,m} such that

∥h −
m∑
j=1

hij∥ ≤ ∥h − h̃∥+ ∥h̃ −
m∑
j=1

hij∥ ≤ ϵ+ R√
m
.

Barron spaces

Definition [Barron, 1993]

Consider functions f : [0, 1]D → R of the form

f (x) =

∫
Ω
a ρ(w tx + b)µ(da, dw , db) = Eµ[a ρ(w

tx + b)], (1)

where x ∈ [0, 1]D , ρ is the ReLU, Ω = R× RD × R is the space of
parameters, and µ is a probability distribution on (Ω,ΣΩ), being
ΣΩ a Borel σ-algebra on Ω. For a function that admits a
representation (1), we define the Barron norm

∥f ∥B = inf
µ

√
Eµ[|a|2(∥w∥1 + |b|)2],

where the infimum is taken over all µ for which the representations
of f holds and x ∈ [0, 1]D . The Barron space is defined as

B = {f ∈ C ([0, 1]D): f admits a representation (1) and ∥f ∥B <∞}

Barron spaces
Barron spaces are constructed to mimic functions that are
approximated by “well-behaved” two-layer neural networks.

In the integral representation (1), we can think of µ as an unknown
probability distribution of the parameters that is the limit to which
converges the sum of atomic measures defined by the specific finite
set of parameters of a neural networks when its width (or,
equivalently, the number of M parameters) tends to infinity.
With the representation (1), approximating a continuous function
with a shallow neural network can be interpreted as a Montecarlo
integration problem.

Recall: Using a function with m parameters fm, we have

▶ (Monte Carlo error rate):

inf
fm
∥fm − f ∥L2 ≤ C

∥f ∥W r

mr
,

where r is the regularity index.

Barron spaces

Theorem [Barron, 1993]

For a function f : [0, 1]D → R, let f̂ (ω) be the Fourier transform
of any extension of f to RD . If

γ(f) :=

∫
RD

|ω|2 |f̂ (ω)| dω <∞

then, for any m > 0, there exists a shallow neural network
fm(x) =

∑m
k=1 akρ(w

T
k x + bk), with ρ being the ReLU activation

function, satisfying

∥fm − f ∥L2(Ω) ≤
3 γ(f)2

m
,

and ∥θ∥P := 1
m

∑m
k=1 |ak |(∥wk∥1 + |bk |) ≤ 2 γ(f)

m

The sum ∥θ∥P is called the path norm of the network, where
θ = (ak ,wk , bk) are the network parameters.

Barron spaces

Note that, in the estimate of the theorem

∥fm − f ∥L2(Ω) ≤
3 γ(f)2

m
,

the numerator γ(f)2 is an integral over RD and could therefore
bring back to the bound an exponential dependence on the
dimension D.
That is, the finiteness of γ(f) in general is not sufficient to avoid
the curse of dimensionality, even though, in several cases, γ(f) has
only a polynomial dependence on D

Barron spaces

Recall that the Fourier transform of f : RD → R is formally defined
as

f̂ (ω) =

∫
RD

f (x) e2πiω·x dx

and it satisfies the property that

(Df)∧(ω) = 2πiωf̂ (ω)

Thus, the condition γ(f) <∞ in Barron’s theorem is equivalent to

∥(D2f)∧∥L1 <∞

and this imposes a regularity condition of f . In particular, it implies
the boundedness of all the first order partial derivatives of f .

Barron spaces

• What classes of functions belong to the Barron space B?

Theorem

Let f ∈ C ([0, 1]D), where γ(f) <∞. Then

∥f ∥B ≤ 2 γ(f) + 2 |f (0)|+ 2∥∇f (0)∥L1

It follows that Gaussian functions, positive definite functions, linear
functions and radial functions belong to B.

Barron spaces

Theorem of direct approximation [Barron, 1993]

For any f ∈ B and integer m > 0, there exists a shallow neural
network fm(x) =

∑m
k=1 akρ(w

T
k x + bk) such that

∥fm(·; θ)− f (·)∥ ≤
3∥f ∥2B
m

.

Furthermore, we have ∥θ∥P ≤ 2∥f ∥B, where
∥θ∥P = 1

m

∑m
i=1 |ai |(∥wi∥1 + |bi |).

Theorem of inverse approximation [Barron, 1993]

Let f ∈ C ([0, 1]D) and assume there a constant Q and a sequence
(fn) ⊂ {fn(·, θ) : ∥θ∥P ≤ Q} such that

lim
n

fn(x) = f (x) ∀x ∈ [0, 1]D

Then f ∈ B and ∥f ∥B ≤ Q.

Barron spaces

To summarize, the Barron space B is the space of all functions
that can be approximated by shallow neural networks with
bounded path norm.
In some cases, the bound of the approximation error in the Barron
spaces overcomes the curse of dimensionality.

Some papers have investigated conditions for PDE solutions to lie
on the Barron space with the goal to apply shallow neural networks
to approximate the solutions of high-dimensional PDEs:

Cf. On the representation of solutions to elliptic PDEs in Barron spaces,

by Z. Chen, J. Lu, and Y. Lu. In: Advances in neural information

processing systems, Vol 34 (2021), pp. 6454–6465

The role of depth

Deep neural networks

Universal Approximation Theorems

There are dual versions of the approximation theorem above where
the network has bounded width and arbitrarily large depth.

Theorem [Kidger and Lyons, 2020]

Assume ρ is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that
point.
For every f ∈ C ([0, 1]D), given ϵ > 0, there exists a neural network
Φ : RD → Rd where the number of neurons Nℓ for each layer ℓ
bounded by D + d + 2 such that

|Φ(x)− f (x)| < ϵ, for any x ∈ [0, 1]D

Note: Unlike shallow networks, the width can be bounded;
however the number of layers L(Φ) can become arbitrarily large.

Universal Approximation Theorems

There are dual versions of the approximation theorem above where
the network has bounded width and arbitrarily large depth.

Theorem [Kidger and Lyons, 2020]

Assume ρ is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that
point.
For every f ∈ C ([0, 1]D), given ϵ > 0, there exists a neural network
Φ : RD → Rd where the number of neurons Nℓ for each layer ℓ
bounded by D + d + 2 such that

|Φ(x)− f (x)| < ϵ, for any x ∈ [0, 1]D

Note: Unlike shallow networks, the width can be bounded;
however the number of layers L(Φ) can become arbitrarily large.

Universal Approximation Theorems

There are dual versions of the approximation theorem above where
the network has bounded width and arbitrarily large depth.

Theorem [Kidger and Lyons, 2020]

Assume ρ is a nonaffine continuous function which is continuously
differentiable at least one point, with nonzero derivative at that
point.
For every f ∈ C ([0, 1]D), given ϵ > 0, there exists a neural network
Φ : RD → Rd where the number of neurons Nℓ for each layer ℓ
bounded by D + d + 2 such that

|Φ(x)− f (x)| < ϵ, for any x ∈ [0, 1]D

Note: Unlike shallow networks, the width can be bounded;
however the number of layers L(Φ) can become arbitrarily large.

Deep Neural Networks

Several papers in the literature have addressed the benefits of
depth in neural networks.

▶ Deep neural networks have shown remarkable success in
applications.

▶ Many observations aimed to explain the benefit of depths are
heuristic (e.g., Chui-Li-Mhaskar (1994) shows that deep
networks can do localized approximation while shallow ones
can not).

▶ A few rigorous results show that deep neural networks achieve
properties that cannot be matched by shallow or shallower
networks.

▶ Historical note: [Sipser, 1986; Hastad, 1987] have shown that
deep circuits are more efficient in representing certain Boolean
functions than shallow circuits.

Deep Neural Networks

• Benefits of depth in neural networks, Matus Telgarsky (2016).

Paper shows that: For any k > 0, there exists a neural network
with Θ(k3) layers, Θ(1) nodes per layer and Θ(1) distinct
parameters that cannot be approximated by networks with O(k)
layers unless they are exponentially large, that is, they have Ω(2k)
nodes.

Notation:
f (n) = O(g(n)) means that f (n) grows no faster than g(n)
f (n) = Θ(g(n)) means that f (n) grows as fast as g(n)
f (n) = Ω(g(n)) means that f (n) grows faster than g(n)

Equivalently

▶ f (n) = O(g(n)) iff ∃k > 0,∃n0 : |f (n)| ≤ kg(n),∀n > n0

▶ f (n) = Θ(g(n)) iff
∃k1, k2 > 0,∃n0 : k1g(n) ≤ f (n) ≤ k2g(n),∀n > n0

▶ f (n) = Ω(g(n)) iff ∃k > 0,∃n0 : f (n) ≥ kg(n),∀n > n0

Deep Neural Networks

The idea of Telgarski is that a deep network cannot be well
approximated by a reasonably-sized shallow network.

Consider the function ∆(x) =

2x if x ∈ [0, 1/2)

2− 2x if x ∈ [1/2, 1)

0 otherwise.
which is implemented by a simple ReLU network.

By combining the function with itself L times creates 2L−1 copies
of it self, uniformly shrunk down. The complexity of the function,
in terms of discontinuities, has increased exponentially with the
number of nodes and layers (both O(L))

Deep Neural Networks

One can show

Theorem

Choose any L ≥ 2. f = ∆L2+1 is a ReLU neural network with
3L2 + 6 nodes and 2L2 + 4 layers but any ReLU network with at
most 2L nodes and L layer cannot approximate f with arbitrary
accuracy, since ∫

[0,1]
|f (x)− g(x)| dx ≥ 1

32
.

This was the first rigorous proof showing that a deep network can
not be approximated by a reasonably-sized shallow network.

Deep Neural Networks

• The Power of Depth for Feedforward Neural Networks, Ronen
Eldan, Ohad Shamir (2016)

Paper shows that: There is an approximately radial function on
RD , expressible by a small 3-layer feedforward neural networks,
which cannot be approximated by any 2-layer network, to more
than a certain constant accuracy, unless its width is exponential in
the dimension.

Result holds for general activation functions including ReLU,
sigmoid and threshold.

Deep Neural Networks

Idea of the proof:

▶ Approximating radial functions is rather straightforward using
3 layers:

1. First, we can construct a linear combination of neurons
expressing the univariate mapping z → z2 arbitrarily well in
any bounded domain.

2. Next, by adding the above combinations together, one for each
coordinate, we can have our network first compute
(approximately) the mapping x → ∥x∥2 =

∑
i x

2
i inside any

bounded domain.
3. Finally, we use the next layer to compute some univariate

function of ∥x∥2, resulting in an approximately radial function.

▶ With only 2 layers, it is less clear how to approximate such
radial functions. Indeed, approximating radial functions with 2
layers would require exponentially large width.

Deep Neural Networks

▶ Modern network architectures are typically very deep

▶ Deep vs. shallow networks: Depth improves expressive
power

▶ With respect to shallow networks (and traditional function
representations), deep neural networks can exploit
composition
→ Blessing of compositionality

Deep Neural Networks

▶ Modern network architectures are typically very deep

▶ Deep vs. shallow networks: Depth improves expressive
power

▶ With respect to shallow networks (and traditional function
representations), deep neural networks can exploit
composition
→ Blessing of compositionality

Deep Neural Networks

▶ Modern network architectures are typically very deep

▶ Deep vs. shallow networks: Depth improves expressive
power

▶ With respect to shallow networks (and traditional function
representations), deep neural networks can exploit
composition

→ Blessing of compositionality

Deep Neural Networks

▶ Modern network architectures are typically very deep

▶ Deep vs. shallow networks: Depth improves expressive
power

▶ With respect to shallow networks (and traditional function
representations), deep neural networks can exploit
composition
→ Blessing of compositionality

Example: piecewise linear functions on R

Triangle function:

T (x) =

{
2x if 0 ≤ x < 1

2

2(1− x) if 1
2 ≤ x ≤ 1

x ∈ R,

can be expressed using ρ(x) = max{x , 0} as

Φ(x) =
[
2 −4

]
ρ

([
1
1

]
x +

[
0
−1

2

])
= 2(x − 0)+ − 4(x − 1

2)+

▶ Φ(x) is a neural network with L = 2, N2 = 2, M = 6.

Example: piecewise linear functions on R

Triangle function:

T (x) =

{
2x if 0 ≤ x < 1

2

2(1− x) if 1
2 ≤ x ≤ 1

x ∈ R,

can be expressed using ρ(x) = max{x , 0} as

Φ(x) =
[
2 −4

]
ρ

([
1
1

]
x +

[
0
−1

2

])
= 2(x − 0)+ − 4(x − 1

2)+

▶ Φ(x) is a neural network with L = 2, N2 = 2, M = 6.

Example: piecewise linear functions on R

Triangle function:

T (x) =

{
2x if 0 ≤ x < 1

2

2(1− x) if 1
2 ≤ x ≤ 1

x ∈ R,

can be expressed using ρ(x) = max{x , 0} as

Φ(x) =
[
2 −4

]
ρ

([
1
1

]
x +

[
0
−1

2

])
= 2(x − 0)+ − 4(x − 1

2)+

▶ Φ(x) is a neural network with L = 2, N2 = 2, M = 6.

Example: piecewise linear functions on R

Triangle function:

T (x) =

{
2x if 0 ≤ x < 1

2

2(1− x) if 1
2 ≤ x ≤ 1

x ∈ R,

can be expressed using ρ(x) = max{x , 0} as

Φ(x) =
[
2 −4

]
ρ

([
1
1

]
x +

[
0
−1

2

])
= 2(x − 0)+ − 4(x − 1

2)+

▶ Φ(x) is a neural network with L = 2, N2 = 2, M = 6.

Example: piecewise linear functions on R

▶ Neural Network with L = 2, N2 = 2
→ piecewise linear function with at most 2 breakpoints

▶ Neural Networks with L = 2, N − 2 = N
→ piecewise linear function with at most N breakpoints
▶ Same expressive power (M = O(N2)) as continuous piecewise

linear functions with the same number of parameters:
N breakpoints ↔ N2 parameters

▶ Composition increases the number of breakpoints.
Neural Networks with L layers, N neurons/layer
(complexity M = O(LN2))

→ piecewise linear function with NL breakpoints

▶ Deep neural networks can improve classical approximation
methods for several function classes
[Daubechies, DeVore, Foucart, Hanin, Petrova, 2022]

Example: piecewise linear functions on R

▶ Neural Network with L = 2, N2 = 2
→ piecewise linear function with at most 2 breakpoints

▶ Neural Networks with L = 2, N − 2 = N
→ piecewise linear function with at most N breakpoints

▶ Same expressive power (M = O(N2)) as continuous piecewise
linear functions with the same number of parameters:
N breakpoints ↔ N2 parameters

▶ Composition increases the number of breakpoints.
Neural Networks with L layers, N neurons/layer
(complexity M = O(LN2))

→ piecewise linear function with NL breakpoints

▶ Deep neural networks can improve classical approximation
methods for several function classes
[Daubechies, DeVore, Foucart, Hanin, Petrova, 2022]

Example: piecewise linear functions on R

▶ Neural Network with L = 2, N2 = 2
→ piecewise linear function with at most 2 breakpoints

▶ Neural Networks with L = 2, N − 2 = N
→ piecewise linear function with at most N breakpoints
▶ Same expressive power (M = O(N2)) as continuous piecewise

linear functions with the same number of parameters:
N breakpoints ↔ N2 parameters

▶ Composition increases the number of breakpoints.
Neural Networks with L layers, N neurons/layer
(complexity M = O(LN2))

→ piecewise linear function with NL breakpoints

▶ Deep neural networks can improve classical approximation
methods for several function classes
[Daubechies, DeVore, Foucart, Hanin, Petrova, 2022]

Example: piecewise linear functions on R

▶ Neural Network with L = 2, N2 = 2
→ piecewise linear function with at most 2 breakpoints

▶ Neural Networks with L = 2, N − 2 = N
→ piecewise linear function with at most N breakpoints
▶ Same expressive power (M = O(N2)) as continuous piecewise

linear functions with the same number of parameters:
N breakpoints ↔ N2 parameters

▶ Composition increases the number of breakpoints.
Neural Networks with L layers, N neurons/layer
(complexity M = O(LN2))

→ piecewise linear function with NL breakpoints

▶ Deep neural networks can improve classical approximation
methods for several function classes
[Daubechies, DeVore, Foucart, Hanin, Petrova, 2022]

Example: piecewise linear functions on R

▶ Neural Network with L = 2, N2 = 2
→ piecewise linear function with at most 2 breakpoints

▶ Neural Networks with L = 2, N − 2 = N
→ piecewise linear function with at most N breakpoints
▶ Same expressive power (M = O(N2)) as continuous piecewise

linear functions with the same number of parameters:
N breakpoints ↔ N2 parameters

▶ Composition increases the number of breakpoints.
Neural Networks with L layers, N neurons/layer
(complexity M = O(LN2))

→ piecewise linear function with NL breakpoints

▶ Deep neural networks can improve classical approximation
methods for several function classes
[Daubechies, DeVore, Foucart, Hanin, Petrova, 2022]

Approximations using Neural Networks

In general, up to the observation we made about Barron spaces,
shallow network are comparable to traditional approximation
methods in terms of computational complexity.

Theorem - Shallow Network Approximation [Mhaskar 1996]

Consider f ∈ C ([0, 1]D). Then

inf
Φ∈F(M,L=2,B)

∥f − Φ∥∞ ≤ c M−1/D

That is, the complexity of a single-layer neural networks Φ that
approximates f with accuracy at least ϵ is

M = O(ϵ−D)

▶ Same approximation rate as classical piecewise linear
approximations

Approximations using Neural Networks

In general, up to the observation we made about Barron spaces,
shallow network are comparable to traditional approximation
methods in terms of computational complexity.

Theorem - Shallow Network Approximation [Mhaskar 1996]

Consider f ∈ C ([0, 1]D). Then

inf
Φ∈F(M,L=2,B)

∥f − Φ∥∞ ≤ c M−1/D

That is, the complexity of a single-layer neural networks Φ that
approximates f with accuracy at least ϵ is

M = O(ϵ−D)

▶ Same approximation rate as classical piecewise linear
approximations

Approximations using Neural Networks

In general, up to the observation we made about Barron spaces,
shallow network are comparable to traditional approximation
methods in terms of computational complexity.

Theorem - Shallow Network Approximation [Mhaskar 1996]

Consider f ∈ C ([0, 1]D). Then

inf
Φ∈F(M,L=2,B)

∥f − Φ∥∞ ≤ c M−1/D

That is, the complexity of a single-layer neural networks Φ that
approximates f with accuracy at least ϵ is

M = O(ϵ−D)

▶ Same approximation rate as classical piecewise linear
approximations

Approximations using Deep Neural Networks
Deep networks can exploit compositionality to reduce the
number of parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]

For f ∈ C ([0, 1]D)

inf
Φ∈F(M,L,B)

∥f − Φ∥∞ ≤ c M−2/D

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−D/2)

▶ It improves the approximation rate of shallow networks

▶ Optimal approximation rate achievable with a ReLU NN

▶ L(Φ) grown like O(ln(1/ϵ))

Approximations using Deep Neural Networks
Deep networks can exploit compositionality to reduce the
number of parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]

For f ∈ C ([0, 1]D)

inf
Φ∈F(M,L,B)

∥f − Φ∥∞ ≤ c M−2/D

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−D/2)

▶ It improves the approximation rate of shallow networks

▶ Optimal approximation rate achievable with a ReLU NN

▶ L(Φ) grown like O(ln(1/ϵ))

Approximations using Deep Neural Networks
Deep networks can exploit compositionality to reduce the
number of parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]

For f ∈ C ([0, 1]D)

inf
Φ∈F(M,L,B)

∥f − Φ∥∞ ≤ c M−2/D

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−D/2)

▶ It improves the approximation rate of shallow networks

▶ Optimal approximation rate achievable with a ReLU NN

▶ L(Φ) grown like O(ln(1/ϵ))

Approximations using Deep Neural Networks
Deep networks can exploit compositionality to reduce the
number of parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]

For f ∈ C ([0, 1]D)

inf
Φ∈F(M,L,B)

∥f − Φ∥∞ ≤ c M−2/D

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−D/2)

▶ It improves the approximation rate of shallow networks

▶ Optimal approximation rate achievable with a ReLU NN

▶ L(Φ) grown like O(ln(1/ϵ))

Approximations using Deep Neural Networks
Deep networks can exploit compositionality to reduce the
number of parameters needed to approximate functions.

Theorem - Deep Network Approximation [Yarotsky, 2017,2018]

For f ∈ C ([0, 1]D)

inf
Φ∈F(M,L,B)

∥f − Φ∥∞ ≤ c M−2/D

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−D/2)

▶ It improves the approximation rate of shallow networks

▶ Optimal approximation rate achievable with a ReLU NN

▶ L(Φ) grown like O(ln(1/ϵ))

Approximations using Deep Neural Networks

Theorem - Deep Network Approximation
[Petersen-Voigtländer, 2018]

Let f be piecewise Cβ([0, 1]D) with β > 0. Then

inf
Φ∈F(M,L,B)

∥f − Φ∥L2([0,1]D) ≤ c M−β/(2(D−1))

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−2(D−1)/β)

▶ Optimal approximation rate achievable with a ReLU NN
▶ The number of layers satisfies L ≤ c ′ log(β + 2)(1 + β/D)

where c ′ is an absolute constant
▶ The constant c depends on D, β but dependence is not

explicit

Approximations using Deep Neural Networks

Theorem - Deep Network Approximation
[Petersen-Voigtländer, 2018]

Let f be piecewise Cβ([0, 1]D) with β > 0. Then

inf
Φ∈F(M,L,B)

∥f − Φ∥L2([0,1]D) ≤ c M−β/(2(D−1))

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−2(D−1)/β)

▶ Optimal approximation rate achievable with a ReLU NN

▶ The number of layers satisfies L ≤ c ′ log(β + 2)(1 + β/D)
where c ′ is an absolute constant

▶ The constant c depends on D, β but dependence is not
explicit

Approximations using Deep Neural Networks

Theorem - Deep Network Approximation
[Petersen-Voigtländer, 2018]

Let f be piecewise Cβ([0, 1]D) with β > 0. Then

inf
Φ∈F(M,L,B)

∥f − Φ∥L2([0,1]D) ≤ c M−β/(2(D−1))

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−2(D−1)/β)

▶ Optimal approximation rate achievable with a ReLU NN
▶ The number of layers satisfies L ≤ c ′ log(β + 2)(1 + β/D)

where c ′ is an absolute constant

▶ The constant c depends on D, β but dependence is not
explicit

Approximations using Deep Neural Networks

Theorem - Deep Network Approximation
[Petersen-Voigtländer, 2018]

Let f be piecewise Cβ([0, 1]D) with β > 0. Then

inf
Φ∈F(M,L,B)

∥f − Φ∥L2([0,1]D) ≤ c M−β/(2(D−1))

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is

M = O(ϵ−2(D−1)/β)

▶ Optimal approximation rate achievable with a ReLU NN
▶ The number of layers satisfies L ≤ c ′ log(β + 2)(1 + β/D)

where c ′ is an absolute constant
▶ The constant c depends on D, β but dependence is not

explicit

Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf
Φ∈F(M,L,B)

∥f − Φ∥ ≤ c M−β/D

▶ Approximation constant c depend on D non-explicitly

▶ L need to be sufficiently large but no quantitative bound is
shown

[Lu, Shen, Yang, Zhang, 2020], [Shen, Yang, Zhang, 2021] are the
first papers to provide non-asymptotic and quantitative
approximation results.

Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf
Φ∈F(M,L,B)

∥f − Φ∥ ≤ c M−β/D

▶ Approximation constant c depend on D non-explicitly

▶ L need to be sufficiently large but no quantitative bound is
shown

[Lu, Shen, Yang, Zhang, 2020], [Shen, Yang, Zhang, 2021] are the
first papers to provide non-asymptotic and quantitative
approximation results.

Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf
Φ∈F(M,L,B)

∥f − Φ∥ ≤ c M−β/D

▶ Approximation constant c depend on D non-explicitly

▶ L need to be sufficiently large but no quantitative bound is
shown

[Lu, Shen, Yang, Zhang, 2020], [Shen, Yang, Zhang, 2021] are the
first papers to provide non-asymptotic and quantitative
approximation results.

Approximations using Deep Neural Networks

Most approximations results using neural network - including those
presented above - are non-quantitative and asymptotic

inf
Φ∈F(M,L,B)

∥f − Φ∥ ≤ c M−β/D

▶ Approximation constant c depend on D non-explicitly

▶ L need to be sufficiently large but no quantitative bound is
shown

[Lu, Shen, Yang, Zhang, 2020], [Shen, Yang, Zhang, 2021] are the
first papers to provide non-asymptotic and quantitative
approximation results.

Approximations using Deep Neural Networks

Theorem [Shen, Yang, Zhang, 2021]

Let f ∈ Bλ(C
α([0, 1]D)), the space of Hölder continuous function

of order α ∈ [0, 1) with Hölder constant λ, and let F(N, L,B)
where N is the width and L is the depth of Φ
Then, for p ∈ [1,∞]

inf
Φ∈F(N,L,B)

∥f − Φ∥Lp([0,1]D) ≤ 19
√
DλN−2α/DL−2α/D

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is about

M = O(ϵ−D/α) Note: M = O(LN2)

▶ This is the nearly optimal approximation rate

▶ Quantitative values for N and L are given

Approximations using Deep Neural Networks

Theorem [Shen, Yang, Zhang, 2021]

Let f ∈ Bλ(C
α([0, 1]D)), the space of Hölder continuous function

of order α ∈ [0, 1) with Hölder constant λ, and let F(N, L,B)
where N is the width and L is the depth of Φ
Then, for p ∈ [1,∞]

inf
Φ∈F(N,L,B)

∥f − Φ∥Lp([0,1]D) ≤ 19
√
DλN−2α/DL−2α/D

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is about

M = O(ϵ−D/α) Note: M = O(LN2)

▶ This is the nearly optimal approximation rate

▶ Quantitative values for N and L are given

Approximations using Deep Neural Networks

Theorem [Shen, Yang, Zhang, 2021]

Let f ∈ Bλ(C
α([0, 1]D)), the space of Hölder continuous function

of order α ∈ [0, 1) with Hölder constant λ, and let F(N, L,B)
where N is the width and L is the depth of Φ
Then, for p ∈ [1,∞]

inf
Φ∈F(N,L,B)

∥f − Φ∥Lp([0,1]D) ≤ 19
√
DλN−2α/DL−2α/D

That is, the complexity of a deep networks Φ that approximates f
with accuracy at least ϵ is about

M = O(ϵ−D/α) Note: M = O(LN2)

▶ This is the nearly optimal approximation rate

▶ Quantitative values for N and L are given

Dimensionality reduction using Deep Neural
Networks

Curse of Dimensionality

▶ Success of deep neural networks in applications is not fully
explained by their mere approximation properties.

▶ Their performance on problems where input dimension is high
often appears to overcome the curse of dimensionality
(COD).

[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with
increasing dimension D

▶ Computational cost of traditional numerical PDE solvers such
as finite difference, finite element and spectral methods, scales
with D

▶ Pointwise approximation of the solution with accuracy ϵ
requires M = O(ϵ−D) parameters → practically impossible to
achieve satisfactory accuracy for very large D

Curse of Dimensionality

▶ Success of deep neural networks in applications is not fully
explained by their mere approximation properties.

▶ Their performance on problems where input dimension is high
often appears to overcome the curse of dimensionality
(COD).

[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with
increasing dimension D

▶ Computational cost of traditional numerical PDE solvers such
as finite difference, finite element and spectral methods, scales
with D

▶ Pointwise approximation of the solution with accuracy ϵ
requires M = O(ϵ−D) parameters → practically impossible to
achieve satisfactory accuracy for very large D

Curse of Dimensionality

▶ Success of deep neural networks in applications is not fully
explained by their mere approximation properties.

▶ Their performance on problems where input dimension is high
often appears to overcome the curse of dimensionality
(COD).

[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with
increasing dimension D

▶ Computational cost of traditional numerical PDE solvers such
as finite difference, finite element and spectral methods, scales
with D

▶ Pointwise approximation of the solution with accuracy ϵ
requires M = O(ϵ−D) parameters → practically impossible to
achieve satisfactory accuracy for very large D

Curse of Dimensionality

▶ Success of deep neural networks in applications is not fully
explained by their mere approximation properties.

▶ Their performance on problems where input dimension is high
often appears to overcome the curse of dimensionality
(COD).

[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with
increasing dimension D

▶ Computational cost of traditional numerical PDE solvers such
as finite difference, finite element and spectral methods, scales
with D

▶ Pointwise approximation of the solution with accuracy ϵ
requires M = O(ϵ−D) parameters → practically impossible to
achieve satisfactory accuracy for very large D

Curse of Dimensionality

▶ Success of deep neural networks in applications is not fully
explained by their mere approximation properties.

▶ Their performance on problems where input dimension is high
often appears to overcome the curse of dimensionality
(COD).

[Bellman, 1952, Novak & Wozniakowsk, 2009]

Approximation methods deteriorate exponentially fast with
increasing dimension D

▶ Computational cost of traditional numerical PDE solvers such
as finite difference, finite element and spectral methods, scales
with D

▶ Pointwise approximation of the solution with accuracy ϵ
requires M = O(ϵ−D) parameters → practically impossible to
achieve satisfactory accuracy for very large D

Curse of Dimensionality

In many multi-dimensional problems, data is highly structured and
the information of interest is low-dimensional

Widely used image datasets:

▶ MNIST: 28× 28 = 784 pixels
per image → R784

▶ intrinsic dimension:
between 8 and 13

▶ ImageNet: 224× 224× 3 = 150528
pixels per image → R150528

▶ intrinsic dimension:
between 26 and 43

Curse of Dimensionality

In many multi-dimensional problems, data is highly structured and
the information of interest is low-dimensional

Widely used image datasets:

▶ MNIST: 28× 28 = 784 pixels
per image → R784

▶ intrinsic dimension:
between 8 and 13

▶ ImageNet: 224× 224× 3 = 150528
pixels per image → R150528

▶ intrinsic dimension:
between 26 and 43

Curse of Dimensionality

In many multi-dimensional problems, data is highly structured and
the information of interest is low-dimensional

Widely used image datasets:

▶ MNIST: 28× 28 = 784 pixels
per image → R784

▶ intrinsic dimension:
between 8 and 13

▶ ImageNet: 224× 224× 3 = 150528
pixels per image → R150528

▶ intrinsic dimension:
between 26 and 43

Manifold hypothesis
Many theoretical results explains this phenomenon either explicitly
or implicitly using the manifold hypothesis.

Manifold hypothesis:

There is a d-dimensional manifold containing our D-dimensional
data of interest where d ≪ D

Manifold hypothesis

We want to approximate a function

f : RD ⊃ S 7→ R

Under the manifold hypothesis, we are not seeking to approximate
f with respect to a norm on RD .

Rather, we approximate f on a d-dimensional manifoldM, where
d ≪ D.

D : ambient dimension vs. d : intrinsic dimension

Bonus: neural networks can learn local coordinate transformations

Manifold hypothesis

We want to approximate a function

f : RD ⊃ S 7→ R

Under the manifold hypothesis, we are not seeking to approximate
f with respect to a norm on RD .
Rather, we approximate f on a d-dimensional manifoldM, where
d ≪ D.

D : ambient dimension vs. d : intrinsic dimension

Bonus: neural networks can learn local coordinate transformations

Manifold hypothesis

We want to approximate a function

f : RD ⊃ S 7→ R

Under the manifold hypothesis, we are not seeking to approximate
f with respect to a norm on RD .
Rather, we approximate f on a d-dimensional manifoldM, where
d ≪ D.

D : ambient dimension vs. d : intrinsic dimension

Bonus: neural networks can learn local coordinate transformations

Manifold hypothesis
[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019;

Nakada,Imaizumi,2020]

Theorem (informal version)

LetM⊂ RD be a smooth d-dimensional manifold and let
f ∈ Bλ(C

α([0, 1]D)), space of Hölder continuous function of order
α ∈ [0, 1) with Hölder constant λ. Then

inf
Φ∈F(N,L,B)

∥f − Φ∥L∞(M) < c(λ, α,D)M−α/d

The complexity of a deep neural network Φ that approximates f
with accuracy at least ϵ satisfies

M ≤ c̃(λ, α,D) ϵ−d/α

▶ Complexity grows like ϵ−d/α (d rather than D)
▶ c̃ depends on D with polynomial or logarithmic dependence

Manifold hypothesis
[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019;

Nakada,Imaizumi,2020]

Theorem (informal version)

LetM⊂ RD be a smooth d-dimensional manifold and let
f ∈ Bλ(C

α([0, 1]D)), space of Hölder continuous function of order
α ∈ [0, 1) with Hölder constant λ. Then

inf
Φ∈F(N,L,B)

∥f − Φ∥L∞(M) < c(λ, α,D)M−α/d

The complexity of a deep neural network Φ that approximates f
with accuracy at least ϵ satisfies

M ≤ c̃(λ, α,D) ϵ−d/α

▶ Complexity grows like ϵ−d/α (d rather than D)
▶ c̃ depends on D with polynomial or logarithmic dependence

Manifold hypothesis
[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019;

Nakada,Imaizumi,2020]

Theorem (informal version)

LetM⊂ RD be a smooth d-dimensional manifold and let
f ∈ Bλ(C

α([0, 1]D)), space of Hölder continuous function of order
α ∈ [0, 1) with Hölder constant λ. Then

inf
Φ∈F(N,L,B)

∥f − Φ∥L∞(M) < c(λ, α,D)M−α/d

The complexity of a deep neural network Φ that approximates f
with accuracy at least ϵ satisfies

M ≤ c̃(λ, α,D) ϵ−d/α

▶ Complexity grows like ϵ−d/α (d rather than D)

▶ c̃ depends on D with polynomial or logarithmic dependence

Manifold hypothesis
[Shaham,Cloninger,Coifman,2018; Schmidt-Hieber,2019;

Nakada,Imaizumi,2020]

Theorem (informal version)

LetM⊂ RD be a smooth d-dimensional manifold and let
f ∈ Bλ(C

α([0, 1]D)), space of Hölder continuous function of order
α ∈ [0, 1) with Hölder constant λ. Then

inf
Φ∈F(N,L,B)

∥f − Φ∥L∞(M) < c(λ, α,D)M−α/d

The complexity of a deep neural network Φ that approximates f
with accuracy at least ϵ satisfies

M ≤ c̃(λ, α,D) ϵ−d/α

▶ Complexity grows like ϵ−d/α (d rather than D)
▶ c̃ depends on D with polynomial or logarithmic dependence

Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

1. Construct a basis or a frame (e.g., a wavelet frame or a
polynomial basis) of Cα([0, 1]D) whose elements are
implemented as neural networks

2. Construct an atlas forM⊂ RD

by covering it with open balls

3. Use the open cover to obtain a
partition of unity ofM
and expand any f onM
using a basis or a frame on Rd

4. Extend the basis or frame terms from the original domain on
Rd to RD in a way that depends on the curvature of the
manifold.

Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

1. Construct a basis or a frame (e.g., a wavelet frame or a
polynomial basis) of Cα([0, 1]D) whose elements are
implemented as neural networks

2. Construct an atlas forM⊂ RD

by covering it with open balls

3. Use the open cover to obtain a
partition of unity ofM
and expand any f onM
using a basis or a frame on Rd

4. Extend the basis or frame terms from the original domain on
Rd to RD in a way that depends on the curvature of the
manifold.

Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

1. Construct a basis or a frame (e.g., a wavelet frame or a
polynomial basis) of Cα([0, 1]D) whose elements are
implemented as neural networks

2. Construct an atlas forM⊂ RD

by covering it with open balls

3. Use the open cover to obtain a
partition of unity ofM
and expand any f onM
using a basis or a frame on Rd

4. Extend the basis or frame terms from the original domain on
Rd to RD in a way that depends on the curvature of the
manifold.

Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

1. Construct a basis or a frame (e.g., a wavelet frame or a
polynomial basis) of Cα([0, 1]D) whose elements are
implemented as neural networks

2. Construct an atlas forM⊂ RD

by covering it with open balls

3. Use the open cover to obtain a
partition of unity ofM
and expand any f onM
using a basis or a frame on Rd

4. Extend the basis or frame terms from the original domain on
Rd to RD in a way that depends on the curvature of the
manifold.

Manifold hypothesis

Idea of the proof [Shaham,Cloninger,Coifman,2018]

1. Construct a basis or a frame (e.g., a wavelet frame or a
polynomial basis) of Cα([0, 1]D) whose elements are
implemented as neural networks

2. Construct an atlas forM⊂ RD

by covering it with open balls

3. Use the open cover to obtain a
partition of unity ofM
and expand any f onM
using a basis or a frame on Rd

4. Extend the basis or frame terms from the original domain on
Rd to RD in a way that depends on the curvature of the
manifold.

Network approximation - Manifold hypothesis
A recent result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold contained
in [0, 1]D having condition number 1/τ . Given
f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1), δ ∈ (0, 1/3], for any ε ∈ (0, 1/2),
there exists a neural network Φf0 with

sup
x∈M

|Φf0(x)− f0(x)| ≤ ε.

The complexity of a deep networks Φf0 satisfies

M ≤ c(λ, α) ϵ−dδ/α,

where dδ depends on d , δ, τ .

▶ Complexity grows like ϵ−dδ/α (dδ rather than D)
▶ c does not depend on D

Network approximation - Manifold hypothesis
A recent result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold contained
in [0, 1]D having condition number 1/τ . Given
f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1), δ ∈ (0, 1/3], for any ε ∈ (0, 1/2),
there exists a neural network Φf0 with

sup
x∈M

|Φf0(x)− f0(x)| ≤ ε.

The complexity of a deep networks Φf0 satisfies

M ≤ c(λ, α) ϵ−dδ/α,

where dδ depends on d , δ, τ .

▶ Complexity grows like ϵ−dδ/α (dδ rather than D)
▶ c does not depend on D

Network approximation - Manifold hypothesis
A recent result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold contained
in [0, 1]D having condition number 1/τ . Given
f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1), δ ∈ (0, 1/3], for any ε ∈ (0, 1/2),
there exists a neural network Φf0 with

sup
x∈M

|Φf0(x)− f0(x)| ≤ ε.

The complexity of a deep networks Φf0 satisfies

M ≤ c(λ, α) ϵ−dδ/α,

where dδ depends on d , δ, τ .

▶ Complexity grows like ϵ−dδ/α (dδ rather than D)

▶ c does not depend on D

Network approximation - Manifold hypothesis
A recent result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold contained
in [0, 1]D having condition number 1/τ . Given
f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1), δ ∈ (0, 1/3], for any ε ∈ (0, 1/2),
there exists a neural network Φf0 with

sup
x∈M

|Φf0(x)− f0(x)| ≤ ε.

The complexity of a deep networks Φf0 satisfies

M ≤ c(λ, α) ϵ−dδ/α,

where dδ depends on d , δ, τ .

▶ Complexity grows like ϵ−dδ/α (dδ rather than D)
▶ c does not depend on D

Johnson-Lindenstrauss Lemma

One key tool to prove this result is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion
embeddings of points from high- into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let δ ∈ (0, 1) and x1, . . . , xp ∈ RD be arbitrary points. Let
m = O(δ−2 log p). Then there is a Lipschitz map f : RD → Rm

such that

(1− δ)|xi − xj |2 ≤ |f (xi)− f (xj)|2 ≤ (1 + δ)|xi − xj |2, for all i , j

▶ Low-distortion embeddings ←→ Restricted Isometry Property
(RIP)

▶ Applications in compressed sensing, manifold learning,
dimensionality reduction, . . .

Johnson-Lindenstrauss Lemma

One key tool to prove this result is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion
embeddings of points from high- into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let δ ∈ (0, 1) and x1, . . . , xp ∈ RD be arbitrary points. Let
m = O(δ−2 log p). Then there is a Lipschitz map f : RD → Rm

such that

(1− δ)|xi − xj |2 ≤ |f (xi)− f (xj)|2 ≤ (1 + δ)|xi − xj |2, for all i , j

▶ Low-distortion embeddings ←→ Restricted Isometry Property
(RIP)

▶ Applications in compressed sensing, manifold learning,
dimensionality reduction, . . .

Johnson-Lindenstrauss Lemma

One key tool to prove this result is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion
embeddings of points from high- into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let δ ∈ (0, 1) and x1, . . . , xp ∈ RD be arbitrary points. Let
m = O(δ−2 log p). Then there is a Lipschitz map f : RD → Rm

such that

(1− δ)|xi − xj |2 ≤ |f (xi)− f (xj)|2 ≤ (1 + δ)|xi − xj |2, for all i , j

▶ Low-distortion embeddings ←→ Restricted Isometry Property
(RIP)

▶ Applications in compressed sensing, manifold learning,
dimensionality reduction, . . .

Johnson-Lindenstrauss Lemma

One key tool to prove this result is an appropriate version of the
Johnson-Lindenstrauss lemma, establishing low-distortion
embeddings of points from high- into low-dimensional space.

Theorem [Johnson-Lindenstrauss, 1984]

Let δ ∈ (0, 1) and x1, . . . , xp ∈ RD be arbitrary points. Let
m = O(δ−2 log p). Then there is a Lipschitz map f : RD → Rm

such that

(1− δ)|xi − xj |2 ≤ |f (xi)− f (xj)|2 ≤ (1 + δ)|xi − xj |2, for all i , j

▶ Low-distortion embeddings ←→ Restricted Isometry Property
(RIP)

▶ Applications in compressed sensing, manifold learning,
dimensionality reduction, . . .

Johnson-Lindenstrauss Lemma
Manifold extension: preservation of ambient distances on a
manifold under the action of random projections

Theorem [Eftekhari and Wakin, 2015]

LetM be a compact d-dimensional Riemannian submanifold of
RD having condition number 1/τ and volume V , satisfying

V
τd
≥

(
21
2
√
d

)d
. Fix δ ∈ (0, 1/3], ρ ∈ (0, 1) and let A be a random

dδ × D matrix populated with i.i.d. zero-mean Gaussian random
variables with variance 1/dδ and

dδ ≥ 18δ−2max
{
24d + 2d log

(√
d

τδ2

)
+ log(2V 2), log

(
8
ρ

)}
.

Then, with probability at least 1− ρ, for every pair of points
x1, x2 ∈M,

(1− δ)∥x1 − x2∥2 ≤ ∥Ax1 − Ax2∥2 ≤ (1 + δ)∥x1 − x2∥2.

Johnson-Lindenstrauss Lemma
Manifold extension: preservation of ambient distances on a
manifold under the action of random projections

Theorem [Eftekhari and Wakin, 2015]

LetM be a compact d-dimensional Riemannian submanifold of
RD having condition number 1/τ and volume V , satisfying

V
τd
≥

(
21
2
√
d

)d
. Fix δ ∈ (0, 1/3], ρ ∈ (0, 1) and let A be a random

dδ × D matrix populated with i.i.d. zero-mean Gaussian random
variables with variance 1/dδ and

dδ ≥ 18δ−2max
{
24d + 2d log

(√
d

τδ2

)
+ log(2V 2), log

(
8
ρ

)}
.

Then, with probability at least 1− ρ, for every pair of points
x1, x2 ∈M,

(1− δ)∥x1 − x2∥2 ≤ ∥Ax1 − Ax2∥2 ≤ (1 + δ)∥x1 − x2∥2.

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:
▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too

large
▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction
▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric

property
▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric

property

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:

▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too

large
▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction
▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric

property
▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric

property

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:
▶ manifold cannot curve too much locally

▶ angle between tangent spaces at nearby points cannot be too
large

▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction
▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric

property
▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric

property

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:
▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too

large

▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction
▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric

property
▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric

property

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:
▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too

large
▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction
▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric

property
▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric

property

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:
▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too

large
▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction
▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric

property
▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric

property

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:
▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too

large
▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction

▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric
property

▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric
property

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:
▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too

large
▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction
▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric

property

▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric
property

Johnson-Lindenstrauss Lemma

Technical requirements on manifoldM⊂ RD :

▶ Condition number 1/τ → norm of the second fundamental
form ofM is bounded by 1/τ in all directions.
This implies:
▶ manifold cannot curve too much locally
▶ angle between tangent spaces at nearby points cannot be too

large
▶ geodesic and ambient distance cannot differ too much

▶ Random orthoprojection A : RD → Rdδ

Here the parameter δ ∈ (0, 1) controls the balance between
isometry and dimension reduction
▶ δ is closer to 1 ⇒ dδ is closer to d ⇒ weaker isometric

property
▶ δ is closer to 0 ⇒ dδ farther from d ⇒ better isometric

property

Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1. Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower

dimensional function g0 on [0, 1]dδ by projecting f0 via a
random orthoprojection A : RD ⊃M→ Rdδ

[Theorem by Eftekhari and Wakin, 2015]

2. Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3. Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4. By applying the mapping A, derive from Φg̃0 a neural network
Φf0 to approximate f0 onM

Challenges:

▶ To ensure the projected function g0 is Hölder continuous

▶ To approximate Bλ(C
α([0, 1]D)) using neural networks

▶ To control number of parameters of Φg0 and Φf0

Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1. Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower

dimensional function g0 on [0, 1]dδ by projecting f0 via a
random orthoprojection A : RD ⊃M→ Rdδ

[Theorem by Eftekhari and Wakin, 2015]

2. Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3. Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4. By applying the mapping A, derive from Φg̃0 a neural network
Φf0 to approximate f0 onM

Challenges:

▶ To ensure the projected function g0 is Hölder continuous

▶ To approximate Bλ(C
α([0, 1]D)) using neural networks

▶ To control number of parameters of Φg0 and Φf0

Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1. Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower

dimensional function g0 on [0, 1]dδ by projecting f0 via a
random orthoprojection A : RD ⊃M→ Rdδ

[Theorem by Eftekhari and Wakin, 2015]

2. Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3. Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4. By applying the mapping A, derive from Φg̃0 a neural network
Φf0 to approximate f0 onM

Challenges:

▶ To ensure the projected function g0 is Hölder continuous

▶ To approximate Bλ(C
α([0, 1]D)) using neural networks

▶ To control number of parameters of Φg0 and Φf0

Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1. Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower

dimensional function g0 on [0, 1]dδ by projecting f0 via a
random orthoprojection A : RD ⊃M→ Rdδ

[Theorem by Eftekhari and Wakin, 2015]

2. Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3. Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4. By applying the mapping A, derive from Φg̃0 a neural network
Φf0 to approximate f0 onM

Challenges:

▶ To ensure the projected function g0 is Hölder continuous

▶ To approximate Bλ(C
α([0, 1]D)) using neural networks

▶ To control number of parameters of Φg0 and Φf0

Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1. Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower

dimensional function g0 on [0, 1]dδ by projecting f0 via a
random orthoprojection A : RD ⊃M→ Rdδ

[Theorem by Eftekhari and Wakin, 2015]

2. Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3. Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4. By applying the mapping A, derive from Φg̃0 a neural network
Φf0 to approximate f0 onM

Challenges:

▶ To ensure the projected function g0 is Hölder continuous

▶ To approximate Bλ(C
α([0, 1]D)) using neural networks

▶ To control number of parameters of Φg0 and Φf0

Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1. Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower

dimensional function g0 on [0, 1]dδ by projecting f0 via a
random orthoprojection A : RD ⊃M→ Rdδ

[Theorem by Eftekhari and Wakin, 2015]

2. Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3. Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4. By applying the mapping A, derive from Φg̃0 a neural network
Φf0 to approximate f0 onM

Challenges:

▶ To ensure the projected function g0 is Hölder continuous

▶ To approximate Bλ(C
α([0, 1]D)) using neural networks

▶ To control number of parameters of Φg0 and Φf0

Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1. Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower

dimensional function g0 on [0, 1]dδ by projecting f0 via a
random orthoprojection A : RD ⊃M→ Rdδ

[Theorem by Eftekhari and Wakin, 2015]

2. Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3. Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4. By applying the mapping A, derive from Φg̃0 a neural network
Φf0 to approximate f0 onM

Challenges:

▶ To ensure the projected function g0 is Hölder continuous

▶ To approximate Bλ(C
α([0, 1]D)) using neural networks

▶ To control number of parameters of Φg0 and Φf0

Network approximation - Manifold hypothesis

Network approximation result - Idea of the proof

1. Given f0 ∈ Bλ(C
α([0, 1]D)), α ∈ (0, 1), define a lower

dimensional function g0 on [0, 1]dδ by projecting f0 via a
random orthoprojection A : RD ⊃M→ Rdδ

[Theorem by Eftekhari and Wakin, 2015]

2. Extend g0 continuously to a function g̃0 on Bλ(C
α([0, 1]dδ))

3. Construct a neural network Φg to approximate functions
g ∈ Bλ(C

α([0, 1]dδ)), α ∈ (0, 1)

4. By applying the mapping A, derive from Φg̃0 a neural network
Φf0 to approximate f0 onM

Challenges:

▶ To ensure the projected function g0 is Hölder continuous

▶ To approximate Bλ(C
α([0, 1]D)) using neural networks

▶ To control number of parameters of Φg0 and Φf0

Network approximation - Proof

Idea of the proof: 1. Construction of low-dim function

By the theorem of Eftekhari and Wakin, with probability at least
1− ρ, we can pick a random matrix A ∈ Rdδ×D , with dδ given
above, such that for every pair of points x1, x2 ∈M, we have

(1− δ)∥x1 − x2∥2 ≤ ∥Ax1 − Ax2∥2 ≤ (1 + δ)∥x1 − x2∥2

Hence we construct a neural network Ψ :M 7→ [0, 1]dδ as

Ψ(x) :=
1

2 diam(M)
Ax − 1

2 diam(M)
y0,

where we choose y0 appropriately so that

1− δ

2 diam(M)
∥x1−x2∥2 ≤ ∥Ψ(x1)−Ψ(x2)∥2 ≤

1 + δ

2 diam(M)
∥x1−x2∥2

Network approximation - Proof

Idea of the proof: 1. Construction of low-dim function

By the theorem of Eftekhari and Wakin, with probability at least
1− ρ, we can pick a random matrix A ∈ Rdδ×D , with dδ given
above, such that for every pair of points x1, x2 ∈M, we have

(1− δ)∥x1 − x2∥2 ≤ ∥Ax1 − Ax2∥2 ≤ (1 + δ)∥x1 − x2∥2

Hence we construct a neural network Ψ :M 7→ [0, 1]dδ as

Ψ(x) :=
1

2 diam(M)
Ax − 1

2 diam(M)
y0,

where we choose y0 appropriately so that

1− δ

2 diam(M)
∥x1−x2∥2 ≤ ∥Ψ(x1)−Ψ(x2)∥2 ≤

1 + δ

2 diam(M)
∥x1−x2∥2

Network approximation - Proof

Idea of the proof: 1. Construction of low-dim function

We can now define a unique low-dimensional function g0, with
values on [0, 1]dδ , to represent the function f0 defined onM.
For any y ∈ Ψ(M) ⊆ [0, 1]dδ , we set

g0(y) := f0(xy), where xy = {x ∈M
∣∣Ψ(x) = y , y ∈ Ψ(M)}.

We next need to show that g0 is Hölder continuous on [0, 1]dδ .

Network approximation - Proof

Idea of the proof: 1. Construction of low-dim function

We can now define a unique low-dimensional function g0, with
values on [0, 1]dδ , to represent the function f0 defined onM.
For any y ∈ Ψ(M) ⊆ [0, 1]dδ , we set

g0(y) := f0(xy), where xy = {x ∈M
∣∣Ψ(x) = y , y ∈ Ψ(M)}.

We next need to show that g0 is Hölder continuous on [0, 1]dδ .

Network approximation - Proof

Idea of the proof: 1. Construction of low-dim function

We observe that, for y1, y2 ∈ Ψ(M), there are x1, x2 ∈M defined
by xi = {x ∈M|Ψ(xi) = yi}, i = 1, 2. Using the properties of f0
and Ψ, it follows that

|g0(y1)− g0(y2)|
= |f0(x1)− f0(x2)|
≤ M∥x1 − x2∥α2
≤ M

((
2 diam(M)

1−δ

)α
∥Ψ(x1)− Ψ(x2)∥α2

)
≤

(
2 diam(M)

1−δ

)α
M∥y1 − y2∥α2 .

We conclude that g0 ∈ Bλ(C
α(Ψ(M))) with λ =

(
2 diam(M)

1−δ

)α
M

That is, g0 is Hölder continuous on Ψ(M).

Network approximation - Proof

Idea of the proof: 2. Extension of low-dim function

We can extend the function g0, originally defined on Ψ(M), to a
Hölder function g̃0 defined on [0, 1]dδ .

Extension Lemma

Let g ∈ Bλ(C
α(E)), where 0 < α ≤ 1, λ > 0 and E ⊆ [0, 1]D is a

closed set with D ∈ N.
Then there exists a function g̃ ∈ Bλ′(Cα([0, 1D])) with
λ′ = 2Dα/2λ such that g̃(x) = g(x) for any x ∈ E .

Network approximation - Proof

Idea of the proof: 3. Approximation of Bλ(C
α([0, 1]dδ))

Several contributions have shown how to build neural networks
implementing functions efficiently.

Operations on neural networks [Petersen-Voigtlaender,2018]

Concatenation. Given neural networks
Φ1 ∈F(M1, L1,B1) and Φ2 ∈ F(M2, L2,B2),
the concatenation of Φ1 and Φ2

is another neural network
Φ1 ◦ Φ2 ∈ F(2M1 + 2M2, L1 + L2 − 1,max(B1,B2))

Network approximation - Proof

Idea of the proof: 3. Approximation of Bλ(C
α([0, 1]dδ))

Several contributions have shown how to build neural networks
implementing functions efficiently.

Operations on neural networks [Petersen-Voigtlaender,2018]

Concatenation. Given neural networks
Φ1 ∈F(M1, L1,B1) and Φ2 ∈ F(M2, L2,B2),
the concatenation of Φ1 and Φ2

is another neural network
Φ1 ◦ Φ2 ∈ F(2M1 + 2M2, L1 + L2 − 1,max(B1,B2))

Network approximation - Proof

Idea of the proof: 3. Approximation of Bλ(C
α([0, 1]dδ))

Several contributions have shown how to build neural networks
implementing functions efficiently.

Operations on neural networks [Petersen-Voigtlaender,2018]

Concatenation. Given neural networks
Φ1 ∈F(M1, L1,B1) and Φ2 ∈ F(M2, L2,B2),
the concatenation of Φ1 and Φ2

is another neural network
Φ1 ◦ Φ2 ∈ F(2M1 + 2M2, L1 + L2 − 1,max(B1,B2))

Network approximation - Proof

Parallelization. Given neural networks
Φ1 ∈F(M1, L,B1) and Φ2 ∈ F(M2, L,B2),
with the same input dimension, the parallelization
of Φ1 and Φ2 is a neural network
P(Φ1,Φ2) ∈ F(M1 +M2, L,max(B1,B2))

Network approximation - Proof

Idea of the proof: 3. Approximation of Bλ(C
α([0, 1]dδ))

Proposition (Approximation of monomials). Fix b > 0 and
dδ ∈ N. For any ϵ > 0 and ν ∈ Nd

δ with |ν| ≤ b there is a neural
network Φmul

ε ∈ F(M, L,B) with

▶ W ≤ 384 6dδ b
(
119 + 36⌊1/dδ⌋+ (384) 4⌊1/D⌋) ϵ−dδ ,

▶ L ≤ (1 + ⌈log2⌊b⌋⌉)(11 + 1/dδ),

▶ B ≤ c(ϵ, b, dδ)

satisfying

sup
x∈[0,1]dδ

∣∣∣Φmul
ϵ (x)− xν

∣∣∣ ≤ ϵ.

It follows that, for g̃0 ∈ Bλ(C
α([0, 1D])), we can construct a neural

network Φg̃0 satisfying similar approximation properties.

Network approximation - Proof

Idea of the proof: 3. Approximation of Bλ(C
α([0, 1]dδ))

Proposition (Approximation of monomials). Fix b > 0 and
dδ ∈ N. For any ϵ > 0 and ν ∈ Nd

δ with |ν| ≤ b there is a neural
network Φmul

ε ∈ F(M, L,B) with

▶ W ≤ 384 6dδ b
(
119 + 36⌊1/dδ⌋+ (384) 4⌊1/D⌋) ϵ−dδ ,

▶ L ≤ (1 + ⌈log2⌊b⌋⌉)(11 + 1/dδ),

▶ B ≤ c(ϵ, b, dδ)

satisfying

sup
x∈[0,1]dδ

∣∣∣Φmul
ϵ (x)− xν

∣∣∣ ≤ ϵ.

It follows that, for g̃0 ∈ Bλ(C
α([0, 1D])), we can construct a neural

network Φg̃0 satisfying similar approximation properties.

Network approximation - Proof

Idea of the proof: 4. Conclusion

We can finally approximate f0 using a neural network.

Using the Φg̃0 and Ψ constructed above, we define the neural
network

Φf0 = Φg̃0 ⊙ Ψ.

For any x ∈M, given any ϵ > 0, we have that

|f0(x)− Φf0(x)| = |g0(Ψ(x))− Φg̃0(Ψ(x))|
= |g̃0(Ψ(x))− Φg̃0(Ψ(x))|
≤ ε

Application: Generalization error

We next apply our approximation result to the problem of
controlling the generalization error in a regression problem.

Let us consider a nonparametric regression problem
corresponding to n observations {(Xi ,Yi)}ni=1 ∈ [0, 1]D × R from
the model

Yi = f0(Xi) + εi , i = 1, · · · , n,

where

▶ f0 ∈ Bλ(C
α([0, 1]D)),

▶ the covariates Xi marginally follow a probability measure µ,

▶ the errors εi are i.i.d normally distributed with mean 0 and
variance σ2 and are independent of the Xi .

Application: Generalization error

We next apply our approximation result to the problem of
controlling the generalization error in a regression problem.

Let us consider a nonparametric regression problem
corresponding to n observations {(Xi ,Yi)}ni=1 ∈ [0, 1]D × R from
the model

Yi = f0(Xi) + εi , i = 1, · · · , n,

where

▶ f0 ∈ Bλ(C
α([0, 1]D)),

▶ the covariates Xi marginally follow a probability measure µ,

▶ the errors εi are i.i.d normally distributed with mean 0 and
variance σ2 and are independent of the Xi .

Application: Generalization error

We next apply our approximation result to the problem of
controlling the generalization error in a regression problem.

Let us consider a nonparametric regression problem
corresponding to n observations {(Xi ,Yi)}ni=1 ∈ [0, 1]D × R from
the model

Yi = f0(Xi) + εi , i = 1, · · · , n,

where

▶ f0 ∈ Bλ(C
α([0, 1]D)),

▶ the covariates Xi marginally follow a probability measure µ,

▶ the errors εi are i.i.d normally distributed with mean 0 and
variance σ2 and are independent of the Xi .

Application: Generalization error

The solution of the regression problem is an estimator f̂
approximating the unknown function f0 ∈ Bλ(C

α([0, 1]D))

The performance of the estimator is assessed by the
generalization error

∥f̂ − f0∥2L2(µ) = EX∼µ

[
(f̂ (X)− f0(X))2

]
We identify the estimator class with neural networks F(N, L,B)

Fact: The generalization error using neural networks is on the
order

O(n−2α/(2α+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

▶ Generalization error suffers from the curse of dimensionality

▶ The network complexity also depends on D

Application: Generalization error

The solution of the regression problem is an estimator f̂
approximating the unknown function f0 ∈ Bλ(C

α([0, 1]D))

The performance of the estimator is assessed by the
generalization error

∥f̂ − f0∥2L2(µ) = EX∼µ

[
(f̂ (X)− f0(X))2

]

We identify the estimator class with neural networks F(N, L,B)

Fact: The generalization error using neural networks is on the
order

O(n−2α/(2α+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

▶ Generalization error suffers from the curse of dimensionality

▶ The network complexity also depends on D

Application: Generalization error

The solution of the regression problem is an estimator f̂
approximating the unknown function f0 ∈ Bλ(C

α([0, 1]D))

The performance of the estimator is assessed by the
generalization error

∥f̂ − f0∥2L2(µ) = EX∼µ

[
(f̂ (X)− f0(X))2

]
We identify the estimator class with neural networks F(N, L,B)

Fact: The generalization error using neural networks is on the
order

O(n−2α/(2α+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

▶ Generalization error suffers from the curse of dimensionality

▶ The network complexity also depends on D

Application: Generalization error

The solution of the regression problem is an estimator f̂
approximating the unknown function f0 ∈ Bλ(C

α([0, 1]D))

The performance of the estimator is assessed by the
generalization error

∥f̂ − f0∥2L2(µ) = EX∼µ

[
(f̂ (X)− f0(X))2

]
We identify the estimator class with neural networks F(N, L,B)

Fact: The generalization error using neural networks is on the
order

O(n−2α/(2α+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

▶ Generalization error suffers from the curse of dimensionality

▶ The network complexity also depends on D

Application: Generalization error

The solution of the regression problem is an estimator f̂
approximating the unknown function f0 ∈ Bλ(C

α([0, 1]D))

The performance of the estimator is assessed by the
generalization error

∥f̂ − f0∥2L2(µ) = EX∼µ

[
(f̂ (X)− f0(X))2

]
We identify the estimator class with neural networks F(N, L,B)

Fact: The generalization error using neural networks is on the
order

O(n−2α/(2α+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

▶ Generalization error suffers from the curse of dimensionality

▶ The network complexity also depends on D

Application: Generalization error

The solution of the regression problem is an estimator f̂
approximating the unknown function f0 ∈ Bλ(C

α([0, 1]D))

The performance of the estimator is assessed by the
generalization error

∥f̂ − f0∥2L2(µ) = EX∼µ

[
(f̂ (X)− f0(X))2

]
We identify the estimator class with neural networks F(N, L,B)

Fact: The generalization error using neural networks is on the
order

O(n−2α/(2α+D))

This rate is optimal in the minimax sense [Schmidt-Hieber, 2020]

▶ Generalization error suffers from the curse of dimensionality

▶ The network complexity also depends on D

Application: Generalization error

Our approach: manifold assumption

We assume data lies on a d-dimensional manifold with d ≪ D

To estimate the regression function f0, we compute the least
square estimator Φ̂ ∈ F(M, L,B) of f0 associated with the
empirical risk minimization

Φ̂ = argmin
Φ=g◦A

g∈F(M,L,B)

1

n

n∑
i=1

(Yi − Φ(Xi))
2 ,

with the estimator returning a neural network Φ̂ of the form g ◦ A
where g ∈ F(M, L,B) and A is a random orthoprojection

A : RD → Rdδ d < dδ < D

Application: Generalization error

Our approach: manifold assumption

We assume data lies on a d-dimensional manifold with d ≪ D

To estimate the regression function f0, we compute the least
square estimator Φ̂ ∈ F(M, L,B) of f0 associated with the
empirical risk minimization

Φ̂ = argmin
Φ=g◦A

g∈F(M,L,B)

1

n

n∑
i=1

(Yi − Φ(Xi))
2 ,

with the estimator returning a neural network Φ̂ of the form g ◦ A
where g ∈ F(M, L,B) and A is a random orthoprojection

A : RD → Rdδ d < dδ < D

Application: Generalization error

Our approach: manifold assumption

We assume data lies on a d-dimensional manifold with d ≪ D

To estimate the regression function f0, we compute the least
square estimator Φ̂ ∈ F(M, L,B) of f0 associated with the
empirical risk minimization

Φ̂ = argmin
Φ=g◦A

g∈F(M,L,B)

1

n

n∑
i=1

(Yi − Φ(Xi))
2 ,

with the estimator returning a neural network Φ̂ of the form g ◦ A
where g ∈ F(M, L,B) and A is a random orthoprojection

A : RD → Rdδ d < dδ < D

Application: Generalization error

Our approach: manifold assumption

We assume data lies on a d-dimensional manifold with d ≪ D

To estimate the regression function f0, we compute the least
square estimator Φ̂ ∈ F(M, L,B) of f0 associated with the
empirical risk minimization

Φ̂ = argmin
Φ=g◦A

g∈F(M,L,B)

1

n

n∑
i=1

(Yi − Φ(Xi))
2 ,

with the estimator returning a neural network Φ̂ of the form g ◦ A
where g ∈ F(M, L,B) and A is a random orthoprojection

A : RD → Rdδ d < dδ < D

Application: Generalization error

Our result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold (with some
regularity) and let f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1). Let Φ̂ be the
solution of the empirical risk minimization problem given above.
Then there exists a constant c = c(σ, β, dδ, λ) such that

∥Φ̂− f0∥2L2(µ) ≤ c n−2α/(2α+dδ)(1 + log n)2

holds with probability at least 1− 2 exp(−ndδ/(2α+dδ)) for n large.

▶ Constant c does not depend on D, improving existing result
[Nakada and Imaizumi, 2019]

▶ Complexity of the network depends weakly on D. M depends
linearly with D and L,B do not depend on D but only on dδ.

Application: Generalization error

Our result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold (with some
regularity) and let f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1). Let Φ̂ be the
solution of the empirical risk minimization problem given above.
Then there exists a constant c = c(σ, β, dδ, λ) such that

∥Φ̂− f0∥2L2(µ) ≤ c n−2α/(2α+dδ)(1 + log n)2

holds with probability at least 1− 2 exp(−ndδ/(2α+dδ)) for n large.

▶ Constant c does not depend on D, improving existing result
[Nakada and Imaizumi, 2019]

▶ Complexity of the network depends weakly on D. M depends
linearly with D and L,B do not depend on D but only on dδ.

Application: Generalization error

Our result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold (with some
regularity) and let f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1). Let Φ̂ be the
solution of the empirical risk minimization problem given above.
Then there exists a constant c = c(σ, β, dδ, λ) such that

∥Φ̂− f0∥2L2(µ) ≤ c n−2α/(2α+dδ)(1 + log n)2

holds with probability at least 1− 2 exp(−ndδ/(2α+dδ)) for n large.

▶ Constant c does not depend on D, improving existing result
[Nakada and Imaizumi, 2019]

▶ Complexity of the network depends weakly on D. M depends
linearly with D and L,B do not depend on D but only on dδ.

Application: Generalization error

Our result [Labate,Shi, 2022]

Theorem (informal version)

LetM⊂ RD be a Riemannian d-dimensional manifold (with some
regularity) and let f ∈ Bλ(C

α([0, 1]D)), α ∈ (0, 1). Let Φ̂ be the
solution of the empirical risk minimization problem given above.
Then there exists a constant c = c(σ, β, dδ, λ) such that

∥Φ̂− f0∥2L2(µ) ≤ c n−2α/(2α+dδ)(1 + log n)2

holds with probability at least 1− 2 exp(−ndδ/(2α+dδ)) for n large.

▶ Constant c does not depend on D, improving existing result
[Nakada and Imaizumi, 2019]

▶ Complexity of the network depends weakly on D. M depends
linearly with D and L,B do not depend on D but only on dδ.

	Learning and spaces of functions
	Neural networks
	Approximations by neural networks
	Barron spaces
	Deep neural networks
	Dimensionality reduction using Deep Neural Networks

