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Geometry of high dimensional data

Useful references about geometry of high dimensional data:

1. Avrim Blum, John Hopcroft, Ravindran Kannan. Foundations
Of Data Science. Cambridge University Press, 2020.

2. David L. Donoho. High-dimensional data analysis: The curses
and blessings of dimensionality, AMS Conference on Math
challenges of the 21st century, 2000.

3. Michael Mitzenmacher and Eli Upfal. Probability and
Computing - Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

4. Roman Vershynin. High-Dimensional Probability: An
Introduction with Applications in Data Science, Cambridge
University Press, 2018

5. Martin J. Wainwright. High-Dimensional Statistics: A
Non-Asymptotic Viewpoint, Cambridge University Press, 2019
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Mathematics of Data Science



Mathematics of data science

The main motivation for the paradigm shift occurring with the
current notion of ‘data science’ is the emphasis on
multidimensional data.

While classical and modern signal analysis was mostly concerned
with 1-D (time-series), 2-D (images) and 3-D (videos) signals,
emerging applications from medical imaging, electronic
surveillance, social networks, etc, typically involve data which are
high-dimensional and non-Euclidean.

The classical formalism of Hilbert spaces and function
representations is often impractical or inadequate.



Mathematics of data science

Figure: Computational biology. DNA screening with a few observations
and huge number of variables.



Mathematics of data science

Figure: Netflix challenge (cf. Netflix Prize, 2006-2011): to predict users
ratings from a sparse incomplete database of ratings given by millions of
users on thousands of movies or TV shows.



Geometry of high dimensional
data



Geometry of high dimensional data

Two main striking phenomena when one moves from low to high
dimensions are:

1. The curse of dimensionality.

2. The concentration of measure.

Both phenomena are manifestations of our difficulty in grasping
intuitively the geometry in high dimensions.



Geometry of high dimensional data

Curse of dimensionality [R. Bellman, 1957]: the computational
effort associated to many algorithms in Rd become exponentially
more onerous as the dimension d grows.

If we want to sample the unit interval such that the distance
between adjacent points is at most 0.01, we need 100
evenly-spaced samples.

An equivalent sampling of a 3-dimensional unit hypercube with a
grid with a spacing of 0.01 between adjacent points would require
106 samples and, similarly, in dimension d , would require 102d

samples.

A modest increase in dimensions results in a dramatic increase in
required data points to cover the space at the same density.



Geometry of high dimensional data
Notion of neighborhood.

To capture a neighborhood that contains a fraction s of the unit

hypercube volume, we need the edge length to be ℓ = s
1
d .

▶ s = 0.01, d = 2, ℓ = (0.01)
1
2 = 0.1

▶ s = 0.01, d = 3, ℓ = (0.01)
1
3 = 0.215...

▶ s = 0.01, d = 10, ℓ = (0.01)
1
10 = 0.631...
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Geometry in high dimensions −→ probability

Let X ,Y be independent random variables with uniform
distribution in [0, 1]d .
The mean square distance ∥X − Y ∥2 satisfies

E [∥X − Y ∥2] = d

6
and var(∥X − Y ∥2) ≈ d

25
.

The notion of nearest neighborhood - which is used in many
numerical algorithms - vanishes in high dimensions.

Pros: Since high-dimensional spaces are sparser, it can be easier to
separate points in high-dimensional space with an adapted
classifier.



Geometry of high dimensional data
Our geometric intuition about space is naturally based on d = 2
and d = 3.

This intuition can often be misleading in high dimensions as
properties of even very basic objects become counterintuitive.
Understanding these paradoxical properties is essential in data
analysis.

We consider:

▶ d-dimensional hyperball of radius R:

Bd(R) = {x ∈ Rd : x21 + · · ·+ x2d ≤ R2}

▶ d-dimensional hypersphere of radius R:

Sd−1(R) = {x ∈ Rd : x21 + · · ·+ x2d = R2}

▶ d-dimensional hypercube of side 2R:

Cd(R) = [−R,R]× · · · × [−R,R] (d times product)



Geometry of high dimensional data

Theorem

The volume of Bd(R) is given by

vol(Bd(R)) =
π

d
2Rd

d
2 Γ(

d
2 )

where Γ(n) =
∫∞
0 rn−1e−rdr is the Gamma function.

Proof. Using polar coordinates,

vol(Bd(R)) =

∫
Sd−1(1)

dΩ

∫ R

r=0
rd−1dr =

AdR
d

d

where Ad is the surface area of the unit d-sphere Bd(1).
A direct calculation gives

I (d) =

∫
R
. . .

∫
R
e−(x21+x22 ...+x2d ) dx1 . . . dxd

= (

∫
R
e−u2du)d = π

d
2



Geometry of high dimensional data
By computing the same integral using polar coordinates, we have

I (d) =

∫
Sd−1(1)

dΩ

∫ ∞

0
e−r2rd−1dr

= Ad

∫ ∞

0
e−tt

d−1
2 (12 t

− 1
2 ) dt

= Ad
1
2

∫ ∞

0
t
d
2
−1e−tdt

= Ad
1
2 Γ(

d
2 ).

By comparing with the above calculation of I (d), we conclude that

Ad =
π

d
2

1
2Γ(

d
2 )

.

Hence

vol(Bd(R)) =
π

d
2Rd

d
2 Γ(

d
2 )



Geometry of high dimensional data
For positive integers n, the have Γ(n) = (n − 1)! Hence, by
Sterling’s formula,

Γ(n) ≈
√

2π

n

(n
e

)n
.

It follows that, for large d , we have (approximately)

vol(Bd(1)) ≈ 1√
dπ

(
2πe

d

) d
2

.

The volume of the unit
d-sphere reaches its maxi-
mum for d = 5.

For d > 5, the volume de-
creases rapidly to zero.



Geometry of high dimensional data

Observation: The volume of a d-ball concentrates near its
equator.

Assume we want to cut off a slab around the equator of the d-unit
ball such that 99% of its volume is contained inside the slab.

In two dimensions the width of the slab has to be almost 2, so that
99% of the volume are captured by the slab.
However, as the dimension d increases, the width of the slab gets
rapidly smaller.

Indeed, in high dimensions the thickness of the slab shrinks
asymptotically to 0, since nearly all the volume of the unit ball lies
a very small distance away from the equator.

This phenomenon is a manifestation of the concentration of
measure.



Geometry of high dimensional data
To illustrate more precisely this form of concentration of measure,
we examine the unit d-ball.

Without loss of generality, let us first choose a vector x1 to be the
north pole so that we can define the equator by the intersection
with the plane x1 = 0 : {x ∈ Rd : ∥x∥ ≤ 1, x1 = 0}.
Hence te equator is a sphere of dimension d − 1.

We define the polar cap P0 as the re-
gion of the sphere above the slab of
width 2p0 around the equator,

P0 = {x ∈ Rd : ∥x∥ ≤ 1, x1 ≥ p0}

Theorem

2 vol(P0)

vol(Bd(1))
≤ e−

d−1
2

p20



Geometry of high dimensional data

Proof. To compute the volume of
the cap P0 we integrate over all slices
of the cap from p0 to 1.
Each slice is a (d − 1)-ball of radius

r(x1) =
√

1− x21 .

Hence, the volume of such a slice is

(1− x21 )
d−1
2 vol(Bd−1(1))

Thus

vol(P0) = vol(Bd−1(1))

∫ 1

p0

(1− x21 )
d−1
2 dx1

Using inequalities 1 + x ≤ ex and erfc(x) ≤ e−x2 , we have

vol(P0) ≤ vol(Bd−1(1))

∫ ∞

p0

e−
(d−1)x21

2 dx1 ≤
vol(Bd−1(1))

d − 1
e−

(d−1)p20
2
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From the theorem above, we have that vol(Bd(1)) = π
d
2

d
2
Γ( d

2
)
.

It follows that

vol(Bd−1(1)) =
π− 1

2 d

d − 1

Γ(d2 )

Γ(d−1
2 )

vol(Bd(1)) ≤ d − 1

2
vol(Bd(1))

Thus, from the inequality in page above, we have

vol(P0) ≤
vol(Bd(1))

2
e−

(d−1)p20
2

and, finally,
2 vol(P0)

vol(Bd(1))
≤ e−

d−1
2

p20
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Observation: The volume of a d-ball concentrates on its outer
shell.

Using the formula of the volume of a ball, we obtain

vol(Bd(1− ϵ)

vol(Bd(1))
= (1− ϵ)d ≤ e−ϵd

Since, for any ϵ > 0, this quantity tends to 0 as d → ∞, it follows
that the spherical shell contained between Bd(1) and Bd(1− ϵ)
contains most of the volume of Bd(1), for large enough d , even if ϵ
is very small.

Setting ϵ = 1
d , the estimate shows that at least (1− e−1) of the

volume is concentrated in a shell of width 1
d .

Remark. A similar property holds for d-hypercube. As d increases,
most of the volume is concentrated near the surface.



Geometry of high dimensional data

Also the hypercube exhibits an interesting volume concentration
behavior.

Proposition. The unit hypercube Cd(12) has volume 1 and

diameter
√
d .

It follows that corners will ”stretch out” more and more as the
dimension d increases, while the rest of the cube must ”shrink” to
keep the volume constant.

For d = 2, the unit square is com-
pletely contained in the unit sphere.
The distance from the center to a
vertex (radius of the circumscribed

sphere) is
√
2
2 and the apothem (the

radius of the inscribed sphere) is 1
2 .



Geometry of high dimensional data
For d = 4, the distance from the center to a vertex is 1, so the
vertices of the cube touch the surface of the sphere. However, the
apothem is still 1

2 . The result, when projected in two dimensions
no longer appears convex even though all hypercubes are convex.

For d > 4, the distance from the center to a vertex is
√
2
2 > 1 and

thus the vertices of the hypercube extend outside the sphere.
(For large d , most of the volume is located in the corners.)

Figure: Relationship between the sphere and the cube in dimensions
d = 2, d = 4 and higher d .



Probability notes

We will discuss below some useful probability estimates.

While results such as the classical Central Limit Theorem provide
an asymptotic estimate, which is valid when we consider a sum of
n random variables with n approaching infinity, concentration
inequalities are non-asymptotic as they hold for all fixed n.

Concentration inequalities quantifies how much a random variable
X deviates around its mean.

One way in which to control a tail probability P(X ≥ t) is by
controlling the moments of the random variable X . Gaining control
of higher-order moments leads to correspondingly sharper bounds
on tail probabilities, ranging from Markov’s inequality (which
requires only existence of the first moment) to the Chernoff bound
(which requires the existence of the moment generating function).



Probability notes
The celebrated central limit theorem shows that the limiting
distribution of a sum of i.i.d. random variables is always Gaussian.

Lindeberg-Levy Central Limit Theorem

Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with
mean µ and variance σ2. Denote

Sn = X1 + X2 + · · ·+ Xn

and consider the normalized random variable

Zn =
Sn − E [Sn]√

var(Sn)
=

1

σ
√
n

n∑
i=1

(Xi − µ).

Then, as n → ∞,

Zn → N (0, 1) in distribution.



Probability notes

Theorem (Integrated tail probability expectation formula)

For any integrable (i.e., finite-mean) random variable X

E [X ] =

∫ ∞

0
P(X > x) dx −

∫ 0

−∞
P(X < x) dx

Proof. We first assume that X is a non-negative random variable.
We use the ‘layer cake representation’ of a non-negative
measurable function

X =

∫ X

0
dx =

∫ ∞

0
χ{x<X} dx

By interchanging the order of expectation and integration

E [X ] =

∫ ∞

0
E [χ{X>x}] dx =

∫ ∞

0
P(X > x) dx
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If X is a general random variable, then we consider its positive and
negative parts separately by writing X = X+ − X−, where
X+ = max(X , 0) and X− = max(−X , 0).

Using the calculation above,

E [X+]=

∫ ∞

0
P(X > x)dx ; E [X−]=

∫ ∞

0
P(X < −x)dx=

∫ 0

−∞
P(X < x)dx

Hence, by the integrability of X ,

E [X ] = E [X+]−E [X−] =

∫ ∞

0
P(X > x) dx−

∫ 0

−∞
P(X < x) dx



Probability notes

Proposition (Markov’s inequality)

For any non-negative random variable Y : S → R we have

P(Y ≥ t) ≤ E [Y ]

t
, for all t > 0.

Proof. Take any t > 0.

E [Y ] = E [Y |Y < t]P(Y < t) + E [Y |Y ≥ t]P(Y ≥ t)

Since Y is non-negative, E [Y |Y < t]P(Y < t) ≥ 0.
Also, E [Y |Y ≥ t] ≥ t.
Thus

E [Y ] ≥ E [Y |Y ≥ t]P(Y ≥ t) ≥ t P(Y ≥ t).



Probability notes

Proposition (Markov’s inequality)

For any non-negative random variable Y : S → R we have

P(Y ≥ t) ≤ E [Y ]

t
, for all t > 0.

Proof. For any t > 0, the following holds:

E [Y ] =

∫
R
y f (y) dy

=

∫ ∞

0
y f (y) dy (Y is positive)

≥
∫ ∞

t
y f (y) dy

≥
∫ ∞

t
t f (y) dy

= t P(Y ≥ t)



Probability notes

Corollary (Chebyshev’s inequality)

Let X be a random variable with mean µ and variance σ2. For any
t > 0,

P(|X − µ| ≥ t) ≤ σ2

t2
.

Proof. By applying Markov’s inequality to Y = (X − µ)2, we have

P(|X − µ| ≥ t) = P((X − µ)2 ≥ t2) = P(Y ≥ t2) ≤ E [Y ]

t2

The proof follows by observing that

E [Y ] = E [(X − µ)2] = var(X ) = σ2

Chebyshev’s inequality is a form of concentration inequality:
X must be close to its mean whenever the variance is small.



Probability notes

Corollary (Chernoff bound)

Let X be a random variable with a moment generating function in
a n-hood of zero. For any t > 0,

P(X ≥ t) = P(eλX ≥ eλt) ≤ e−λtE [eλX ] for λ > 0

P(X ≤ t) = P(eλX ≤ eλt) ≤ e−λtE [eλX ] for λ < 0

Proof. Apply Markov’s inequality to Y = eλX .

Note: E [eλX ] is the moment generating function MX (λ) of X .



Probability notes

The Law of Large Numbers is a consequence of Chebychev’s
inequality.

Theorem (Law of Large Numbers)

Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables with
mean µ and variance σ2. Then

P(|1
n

n∑
i=1

Xi − µ| > ϵ) ≤ σ2

nϵ2
.

Proof. Proof follows directly from Chebyshev’s inequality, after
observing that

var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

var(Xi ) =
σ2

n



Probability notes

As an application of the Law of Large Numbers, let Z be a
d-dimensional random point whose coordinates are each selected
from a zero mean, 1

2π variance Gaussian.

We set such value of the so the Gaussian probability density equals
one at the origin and is bounded below throughout the unit ball by
a constant.

By the Law of Large Numbers, the square of the distance of Z to
the origin will be of the order of d with high probability. In
particular, there is vanishingly small probability that such a random
point z would lie in the unit ball. This implies that the integral of
the probability density over the unit ball must be vanishingly small.
On the other hand, the probability density in the unit ball is
bounded below by a constant. We thus conclude that the unit ball
must have vanishingly small volume.



Probability notes

Proposition (Gaussian tail bounds)

Let X ∼ N (µ, σ2). For all t > 0, we have

P(X − µ ≥ t) ≤ e−
t2

2σ2 .

Proof. The moment-generating function is E [eλX ] = eλµeλ
2 σ2

2 .
In fact, for Y = X − µ, a direct calculation shows

E [eλY ] =
1√
2πσ

∫
R
eλy−

y2

2σ2 dy =
1√
2π

∫
R
eλσz−

z2

2 dz

=
e

λ2σ2

2

√
2π

∫
R
e−

(z−λσ)2

2 dz = e
λ2σ2

2

Using the Chernoff bound, we obtain

P(X − µ > t) ≤ E [eλ(X−µ)] e−λt = e−λteλ
2 σ2

2 .

Minimizing this expression over λ gives λ = t
σ2 and thus

P(X − µ > t) ≤ e−
t2

2σ2
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Definition

A Random variable X with mean µ is called sub-Gaussian if there
exists a positive number σ such that

E [eλ(X−µ)] ≤ e
σ2λ2

2 , for all λ ∈ R.

Any Gaussian random variable with variance σ2 is also a
sub-Gaussian random variable with parameter σ.

In fact, if X ∼ N (µ, σ2), then E [eλ(X−µ)] = e
σ2λ2

2 .

Just as the property of Gaussianity is preserved by linear operations
so is the property of sub-Gaussianity.
For instance, if X1, X2 are independent sub-Gaussian variables with
parameters σ1 and σ2, then a simple calculation shows that

X1 + X2 is sub-Gaussian with parameter
√
σ2
1 + σ2

2.



Probability notes
An important example of non-Gaussian but sub-Gaussian random
variables are the Rademacher random variables.

Example (Rademacher random variables)

A Rademacher random variable Y takes on the values ±1 with
equal probability and is sub-Gaussian with parameter σ = 1.

By computing the moment generating function and using the
Taylor series expansion for the exponential, we have

E [eλY ] = 1
2(e

λ + e−λ) = 1
2(

∞∑
k=0

λk

k! +
∞∑
k=0

(−λ)k

k! )

=
∞∑
k=0

λ2k

(2k)!

≤ 1 +
∞∑
k=1

λ2k

2k k!

= e
λ2

2



Probability notes

One can show that any bounded random variable is sub-Gaussian.

Example (Bounded random variables)

Let X be a zero-mean random variable, supported on some interval
[a, b]. Then X is sub-Gaussian with parameter at most σ = b − a.
In fact the estimate can be sharpened to show that the parameter
is at most σ = b−a

2 .



Probability notes

Proposition (Sub-Gaussian tail bounds)

Let X be a sub-Gaussian random variable with parameter σ. For
all t > 0, we have

P(X − µ ≥ t) ≤ e−
t2

2σ2

P(|X − µ| ≥ t) ≤ 2e−
t2

2σ2 .

Proof. Using the Chernoff bound and the definition of
sub-Gaussian, we obtain

P(X − µ ≥ t) ≤ e−λtE [eλ(X−µ)] ≤ e−λte
σ2λ2

2 .

Minimizing this expression over λ gives λ = t
σ2 and, thus,

P(X − µ ≥ t) ≤ e−
t2

2σ2 .

As the variable −X is also sub-Gaussian we also have

P(X − µ ≤ −t) ≤ e−
t2

2σ2 ,

which, combined with the other inequality, gives the second
statement.
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Using the sub-Gaussian tail bounds and the properties of
sub-Gaussianity, we have the following result.

Hoeffding’s inequality

Let X1,X2, . . . ,Xn be independent sub-Gaussian random variables
with mean E [Xi ] = µi and sub-Gaussian parameter σi , for
i = 1, . . . , n. Then

P

(
n∑

i=1

(Xi − µi ) ≥ t

)
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
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The Hoeffding’s inequality is often stated only for the special case
of bounded random variable

Hoeffding’s inequality

Let X1,X2, . . . ,Xn be a sequence of independent random variables
with mean E [Xi ] = µi and satisfying |Xi | ≤ ai , for i = 1, . . . , n.
Then

P

(
|

n∑
i=1

(Xi − µi )| ≥ t

)
≤ 2 exp

(
− t2

2
∑n

i=1 a
2
i

)
Remark. The inequality implies that fluctuations larger than
O(

√
n) have small probability. For example, if ai = a for all i , then

setting t = a
√
2n ln n yields

P

(
|

n∑
i=1

Xi | > a
√
2n ln n

)
≤ 2

n
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The notion of sub-Gaussianity is fairly restrictive, so that it is
natural to consider various relaxations of it.

Definition

A Random variable X with mean µ is called sub-exponential if
there exist non-negative quantities ν, b such that

E [eλ(X−µ)] ≤ e
ν2λ2

2 , for all |λ| ≤ 1

b
.

A sub-Gaussian random variable is also sub-exponential.

To see that, set ν = σ and b = 0 where 1
0 is interpreted as ∞.
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There are sub-exponential random variables that are not
sub-Gaussian.

Example

Let X = Z 2, where Z ∼ N (0, 1). Z is sub-exponential but not
sub-Gaussian.

For λ < 1
2 , noticing that E [X ] = E [Z 2] = 1, we have

E [eλ(X−1)] = 1√
2π

∫
R
eλ(z

2−1)e−z2/2 dz

=
e−λ

√
1− 2λ

.

For λ > 1
2 , the moment generating function is infinite, showing

that X is not sub-Gaussian. Also, calculus-type inequalities give

e−λ
√
1−2λ

≤ e2λ
2
= e4λ

2/2 for |λ| < 1
4

showing that X is sub-exponential with parameters (ν, b) = (2, 4).
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Proposition (Sub-exponential tail bounds)

Let X be a sub-exponential random variable with parameters
(ν, b). Then

P|X − µ ≥ t) ≤

{
e−

t2

2ν2 if 0 ≤ t ≤ ν2

b

e−
t
2b if t > ν2

b

P(|X − µ| ≥ t) ≤

{
2e−

t2

2ν2 if 0 ≤ t ≤ ν2

b

2e−
t
2b if t > ν2

b

The proof relies on the Chernoff bound, similar to the proof of the
sub-Gaussian tail bounds.
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The sub-exponential property can be verified by explicitly
computing or bounding the moment-generating function. This
direct calculation may be impractical in many settings.
An alternative method is provided by controlling the polynomial
moments of the random variable.

Definition

Given a random variable X with mean µ = E [X ] and variance σ2,
we say that Bernstein’s condition with parameter b holds if

|E [(X − µ)k ] ≤ 1
2k!σ

2bk−2 for k = 2, 3, . . .

One sufficient condition for Bernstein’s condition to hold is that X
be bounded; in particular, if |X − µ| ≤ b, then it is straightforward
to verify the condition above.
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Proposition

If a random variable X satisfies the Bernstein condition with
parameter b, then it is sub-exponential with parameters determined
by ν = σ2 and b.

Proof. Using the Bernstein’s condition

E [eλ(X−µ)] = 1 +
λ2σ2

2
+

∞∑
k=3

λk E [(X − µ)k ]

k!

≤ 1 +
λ2σ2

2
+

λ2σ2

2

∞∑
k=3

(|λ|b)k−2

= 1 +
λ2σ2

2

∞∑
k=2

(|λ|b)k−2

For |λ| < 1/b, we can sum the geometric series to obtain

E [eλ(X−µ)] ≤ 1 +
λ2σ2

2

1

1− b|λ|
≤ exp

λ2σ2/2

1− b|λ|
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It follows that

E [eλ(X−µ)] ≤ e
λ2(

√
2σ)2

2 for |λ| < 1
2b ,

showing that X is sub-exponential with parameters (
√
2σ, 2b).
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The following result follows from the Proposition above and the
sub-exponential tail bounds.

Theorem (Bernstein-type bound)

For any random variable X satisfying the Bernstein condition with
parameter b we have

E [eλ(X−µ)] ≤ e
λ2σ2/2
1−b|λ| for |λ| < 1

b .

Additionally,

P(|X − µ| > t) ≤ 2 e
− t2

σ2+bt for all t > 0.
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Here is another variant of the Bernstein-type bounds (requiring a
slightly different argument)

Bernstein’s inequality

Let X1,X2, . . . ,Xn be a sequence of independent random variables
satisfying |Xi | ≤ a and E [X 2

i ] = σ2, for i = 1, . . . , n. Then

P

(
|

n∑
i=1

Xi | > t

)
≤ 2 exp

(
− t2

2nσ2 + 2
3at

)

Note that Bernstein’s inequality uses the variance of the
summands to improve the tail estimate over Hoeffding’s inequality.
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Theorem (Master Tail bound)

Let X1, . . . ,Xn are independent random variables with zero mean
and variance at most σ2.
Suppose

(i) a ∈ [0,
√
2nσ2];

(ii) for all i , |E [X r
i ]| ≤ σ2r ! for r = 3, 4, . . . , ⌊ a2

4nσ2 ⌋.
Then

P(|
n∑

i=1

Xi | ≥ a) ≤ 3 e−
a2

12nσ2

[Sketch of the proof] Apply Markov’s inequality to X r where r is a large

even number. Since r is even, x r is nonnegative, and thus

P(|X | > a) = P(X r > ar ) ≤ E (X r )/ar . If E (X r ) is not too large, we will

get a good bound. To compute E (X r ), write E (X ) as E (X1 + · · ·+ Xn)
r

and expand the polynomial into a sum of terms. Using independence

E (X ri
i X

rj
j ) = E (X ri

i )E (X
rj
j ) so we get a collection of simpler expectations

that can be bounded using our assumption that |E [X r
i ]| ≤ σ2r !
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Theorem

Almost all the volume of the high-dimensional cube is located in
its corners.

Proof. Let x = (x1, . . . , xd) ∈ Rd where each xi ∈ [−1
2 ,

1
2 ] is

chosen uniformly at random. The event that x also lies in the
sphere means

∥x∥2 =

√√√√ d∑
i=1

x2i ≤ 1.

Let zi = x2i and observe that

E [zi ] =

∫ 1
2

− 1
2

t2dt =
t3

3

∣∣∣ 12
− 1

2

=
1

12
⇒ E [∥x∥22] =

d∑
i=1

E [zi ] =
d

12
.
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Using Hoeffding’s inequality, for sufficiently large d , we have that

P(∥x∥2 ≤ 1) = P

(
d∑

i=1

x2i ≤ 1

)

= P

(
d∑

i=1

(zi − E [zi ]) ≤ 1− d

12

)

= P

(
d∑

i=1

(E [zi ]− zi ) ≥
d

12
− 1

)

≤ 2 exp

(
−
( d
12 − 1)2

2d (16)
2

)
≤ 2 e−

d
8

As this values goes to 0 when d → ∞, this shows random points in
d-cubes are most likely outside the sphere. That is, almost all the
volume of a d-cube concentrates in its corners.
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Problem:

How to generate random points on a sphere?

Here is an approach when d = 2.

To generate a point (x , y), we select x and y coordinates uniformly
at random from [−1, 1]. This yields points that are distributed
uniformly at random in a square that contains the unit circle.
We next project these points onto the circle.

The resulting distribution will not be uniform on the circle since
more points fall on a line from the origin to a vertex of the square,
than fall on a line from the origin to the midpoint of an edge due
to the difference in length of the diagonal of the square to its side
length.
To remedy this problem, we discard all points outside the unit
circle and only project the remaining points onto the circle.
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• The above construction fails in higher dimensions.

As we have shown above, the ratio of the volume of Sd−1(1) to the
volume of Cd(1) decreases rapidly as the dimension d increases.

As a result, for large d , almost all the generated points will be
discarded in this process as they lay outside the unit d-ball and we
end up with essentially no points inside the d-ball and thus, after
projection, with essentially no points on Sd−1(1).

• Instead we can proceed as follows.

Recall that the multivariate Gaussian distribution is symmetric
about the origin - which is exactly what we need.

Hence, we construct a vector in Rd whose entries are
independently drawn from a univariate Gaussian distribution. We
then normalize the resulting vector to lie on the sphere. This gives
a distribution of points that is uniform over the sphere.
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Having a method of generating points uniformly at random on
Sd−1 at our disposal, we can now give a probabilistic proof that
points on Sd−1 concentrate near its equator.

Without loss of generality we pick an arbitrary unit vector x1 which
represents the north pole and the intersection of the sphere with
the plane x1 = 0 forms our equator.

We extend x1 to an orthonormal basis x1, . . . , xd .

Using the method presented above, we generate random points X
on Sd−1 by fist sampling (Z1, . . . ,Zn) ∈ N (0, 1), and then
normalizing X = (X1, . . . ,Xd) where Xi =

1∑d
k=1 Z

2
k

Zi .
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Since X ∈ Sd−1, then
∑d

k=1⟨X , xk⟩2 = 1
We also have that

E [
d∑

k=1

⟨X , xk⟩2] = E [1] = 1

hence, by symmetry, E [⟨X , x1⟩2] = 1
d .

By Markov’s inequality,

P(|⟨X , x1⟩| > ϵ) = P(|⟨X , x1⟩|2 > ϵ2) ≤ E [⟨X , x1⟩2]
ϵ2

=
1

dϵ2
.

For fixed ϵ we can make this probability arbitrarily small by
increasing the dimension d .

This proves our claim that points on the high-dimensional sphere
concentrate near its equator.
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Properties of random vectors in high dimensions.

Suppose we generate a vector x = (x1, . . . , xn) where each
coordinate is an independent random variable with zero mean and
unit variance. Then

E [∥x∥2] = E

[
n∑

i=1

x2i

]
=

n∑
i=1

E [x2i ] = n.

Hence we expect the length ∥x∥ of x is
√
n.

This does not imply that the typical length is about
√
n. For that,

we need to derive a concentration inequality.
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We assume that the coordinates xi of the vector (x1, . . . , xn) are
xi ∼ N (0, 1).

It follows that Z =
∑n

i=1 x
2
i has a χ2 distribution with n degrees

of freedom.

It turns out that Z is sub-exponential with parameters (2
√
n, 4).

Hence, using the sub-exponential tail bounds formula, we have

P

(
|1
n

n∑
i=1

x2i − 1| ≥ t

)
≤

{
2e−

nt2

8 if 0 < t ≤ 1

2e−
nt
8 if t > 1

≤ 2e−
n
8
min(t,t2)
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Observation: Two randomly drawn vectors in high dimensions are
almost perpendicular.

The angle θx ,y between two vectors x and y in Rd satisfies

cos θx ,y =
⟨x , y⟩
∥x∥∥y∥

Theorem

Let x , y ∈ Rd be two random vectors with i.i.d. Rademacher
variables (that is, the entries xi , yi take values ±1 with equal
probability).
Then

P

(
| cos θx ,y | ≥

√
2 ln d

d

)
≤ 2

d
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Proof. Observe that ⟨x , y⟩ =
∑

i xiyi is a sum of i.i.d.
Rademacher variables, hence E [⟨x , y⟩] =

∑
i E [xiyi ] = 0. By the

Hoeffding’s inequality

(Recall: P(|
d∑

i=1

Xi | > a
√
2d ln d) ≤ 2

d )

observing that a = |xiyi | ≤ 1 we have

P(| ⟨x , y⟩
∥x∥∥y∥

| >
√

2 ln d

d
) = P(|⟨x , y⟩| >

√
2d ln d) ≤ 2

d

Remark. A similar result holds for Gaussian random vectors in Rd

or random vectors chosen from the sphere Sd−1.
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Remark. Let x1, x2, . . . , xm be random vectors whose entries are
i.i.d. Rademacher variables. By refining the argument in the proof
above, we obtain that for any pair of vector xi , xj ,

P

(
| cos θxi ,xj | ≥

√
2 ln c

d

)
≤ 2

c
,

where c > 0 is a constant.
By choosing m =

√
c/4 (using the union bound) we have that

with high probability

max
i ,j ,i ̸=j

| cos θxi ,xj | ≤
√

2 ln c

d

If we choose c = ed/200, then any two vectors are almost
orthogonal in the sense that | cos θxi ,xj | ≤ 1

10 .
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Gaussians in High Dimension
A one-dimensional Gaussian has its mass close to the origin.
However, the behavior is different when the dimension d increases.

The d-dimensional spherical Gaussian with zero mean and variance
σ2 in each coordinate has density function

p(x) =
1

(2π)d/2σd
e−

|x|2

2σ2

The value of the density is maximum at the origin, but there is
very little volume there.

When σ = 1, integrating the probability density over a unit ball
centered at the origin yields almost zero mass, since the volume of
such a ball is negligible.
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Denoting by r = ∥x∥ the ℓ2 distance from the center of the
Gaussian, the integral ∫ 1

0
p(r) dr

is vanishing small as d increases.
In fact we have that

p(r) ≈ rd−1er
2/2

We estimate the maximum by setting the derivative to zero

d
dr p(r) =

d
dr r

d−1er
2/2 = (d − 1)rd−2er

2/2 − rder
2/2 = 0,

showing the maximum occurs at r =
√
d − 1

Mass is concentrated about r ≈
√
d .
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Theorem (Gaussian Annulus Theorem)

Let p(x) be a d-dimensional spherical Gaussian with unit variance
in each direction. For any β ≤

√
d∫

√
d−β≤|x |≤

√
d+β

p(x) dx ≥ 1− 3e−cβ2
,

where c is a fixed positive constant.

The Gaussian Annulus Theorem states that volume concentrates
about a thin annulus of radius

√
d .

Specifically, all but at most 3e−cβ2
of the probability mass lies

within the annulus
√
d − β ≤ |x | ≤

√
d + β.

Note that E (|x |2) =
∑d

i=1 |xi |2 = d , hence the mean squared
distance of a point from the center is d .
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Proof. Let x = (x1, . . . , xd) be a point selected from a unit
variance Gaussian centered at the origin and let r = |x |.

The domain of integration can be expressed as |r −
√
d | ≤ β

We examine the complementary region |r −
√
d | > β

If |r −
√
d | > β then

|r2 − d | = |r +
√
d ||r −

√
d | ≥ (r +

√
d)β ≥ β

√
d (1)

We have
|r2 − d | ≥ β

√
d

|x21 + . . .+ x2d − d | ≥ β
√
d

|(x21 − 1) + . . .+ (x2d − 1)| ≥ β
√
d

|w1 + . . .+ wd | ≥ β
√
d

2

where, in the last step, we used the change of variable wi =
x2i −1
2

Note that E [wi ] =
1
2E [x

2
i − 1] = 1

2(E [x
2
i ]− 1) = 0
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In order to apply the Master Tail Bound theorem, we verify the
bound on high order moments.

Let s be a positive integer. If |xi | ≤ 1, then |x2i − 1|s ≤ 1 and, if
|xi | > 1, then |x2i − 1|s ≤ |xi |2s .
It follows that

|wi |s = (
|x2i −1|

2 )s ≤ 1+x2si
2s .

Using the last inequality, we have

|E [w s
i ]| ≤ 2−sE (1 + x2si ) = 2−s

(
1 + E (x2si )

)
= 2−s

(
1 +

√
2
π

∫ ∞

0
x2se−

x2

2 dx

)
With the change of variable z = x2

2 , the parenthesis term becomes

1 + 2s√
π

∫ ∞

0
zs−1/2e−z dz = 1 + 2s√

π
Γ(s + 1

2) = 1 + 2s
s−1∏
j=0

(j +
1

2
)

which can be bound by 2ss!
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Hence we have
|E [w s

i ]| ≤ s!

which, for the special case s = 2, gives that var(wi ) = E [w2
i ] ≤ 2.

This implies:
|E [w s

i ]| ≤ 2s! := σ2s!

where σ2 = 2 is the bound on the variance of the variables wi .

We can now apply the Master Tail Bound theorem with σ2 = 2
(according to the notation of the Theorem where σ2 denotes the
bound on the variance of the random variables wi ) to obtain

P(|w1 + . . .+ wd | ≥
β
√
d

2
) ≤ 3 e−

β2

96
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Application: Mixture of Gaussians

Problem

Given a mixture of two Gaussian densities

p(x) = w1 p1(x) + w2 p2(x), w1 + w2 = 1

under what conditions the two Gaussians separable?

We claim that the means of the d-dimension spherical
unit-variance Gaussians need to be separated by Ω(d1/4).

The idea is that, with high probability, points in the same cluster
belong to the same Gaussian because most of the points are
concentrated according to the Gaussian Annulus Theorem.
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Suppose to randomly select x , y ∼ N (µ, I ) from the same
Gaussian.

Observe that most probability mass lies in an annulus of width
O(1) and radius ≈

√
d . Rotate the coordinate system so that x is

at the North pole. With high probability, y is in the slab
{(y1, . . . , yd) : |y1| < c} for some c = O(1).
Hence y is nearly orthogonal to x and ∥x − y∥ ≈

√
∥x∥2 + ∥y∥2.

Since

x = (
√
d ± O(1), 0, . . . , 0), y = (±O(1),

√
d ± O(1), 0, . . . , 0)

then
∥x − y∥2 = (d ±

√
d) + (d ±

√
d) = 2d ±

√
d
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Suppose now to randomly select x ∼ N (p, I ), y ∼ N (q, I ) from
different Gaussians.

With high probability, x and y lie in an annulus of width O(1) and
radius ≈

√
d centered at p and q respectively.

Also, (x − p), (p − q), (q − y) are nearly mutually perpendicular.
Hence,

∥x−y∥2 ≈ ∥x−p∥2+∥p−q∥2+∥q−y∥2 = 2d±O(
√
d)+∥p−q∥2

Thus if ∥p − q∥2 = Ω(
√
d) we can separate points
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Random Projections.
Nearest neighbor search routines are frequently used in
applications.

In nearest neighbor search problem, we are given a set of n points
in Rd where n and d are usually large. The task is to find the
nearest or approximately nearest database point to a query point.

To speed up the search, it is convenient to reduce the
dimensionality of the problem by projecting

Φ : Rd → Rk , k ≪ d

This should be carried out while maintaining the geometry of the
problem. That is, if points were close in Rd then they should
remain close in Rk .

We will apply the Gaussian Annulus Theorem to show such a
projection exists and is simple to compute.
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Let u1, . . . , uk be independent random vectors in Rd drawn from
the spherical Gaussian with unit variance N (0, I ).
For v ∈ Rd , we define the orthogonal projection ΦU : Rd → Rk by

ΦU(v) = (u1 · v , . . . , uk · v).
We will show that, with high probability, |ΦU(v)| ≈

√
k |v |.

To check if v ′ is close to v in Rd , then it is sufficient to compute

|Φ(v)− Φ(v ′)| = |Φ(v − v ′)| ≈
√
k |v − v ′|
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Theorem (Random Projection Theorem)

Let v ∈ Rd and the projection Φ : Rd → Rk be defined as above.
There exists c > 0 s.t., for any ϵ ∈ (0, 1),

P(
∣∣∣|Φ(v)| − √

k |v |
∣∣∣ ≥ ϵ

√
k |v |) ≤ 3e−ckϵ2

where P is taken over the random draws of the vectors ui .

Proof. By rescaling both sides of the inequality by |v |, we can
assume |v | = 1. In particular, for each i = 1, . . . , k ,

ui · v =
d∑

j=1

uijvj

is normally distributed with zero mean and variance 1.
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In fact, we have that

var(ui · v) = var(
d∑

j=1

uijvj) =
d∑

j=1

var(uij)v
2
j =

d∑
j=1

v2j = |v2| = 1

Since u1 · v , . . . , uk · v are independent Gaussian random variables,
Φ(v) is a random vector from a k-dimensional spherical Gaussian
p(x) with unit variance in each coordinate.

The proof is completed by applying the Gaussian Annulus Theorem
with d = k and β = ϵ

√
k:∫

(1−ϵ)
√
kv<|x=Φ(v)|<(1+ϵ)

√
kv

p(x) dx ≤ 1− 3 e−ckϵ2
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Theorem (Johnson-Lindenstrauss Lemma)

For any 0 < ϵ < 1 and any n > 0, let k ≥ 3
cϵ2

log n, where c is as

in the Random Projection Theorem. For any set of n points in Rd ,
the random projection f : Rd → Rk defined above has the property
that, for any pair vi , vj ∈ Rd , with probability at least 1− 3

2n ,

(1− ϵ)
√
k |vi − vj | ≤ |f (vi )− f (vj)| ≤ (1 + ϵ)

√
k |vi − vj |.

Proof. Observe that f (vi )− f (vj) = f (vi − vj).
The inequality above is equivalent to

|f (vi )−f (vj)|−
√
k|vi−vj | = |f (vi−vj)|−

√
k |vi−vj | ≥ ϵ

√
k |vi−vj |.

By applying the Random Projection Theorem, we have

P(|f (vi − vj)| −
√
k |vi − vj | ≥ ϵ

√
k |vi − vj |) ≤ 3 e−ckϵ2 ≤ 3

n3
,

provided k ≥ 3 ln n
cϵ2

. Hence, there are
(n
2

)
< n2

2 pairs of points, the
probability that the above inequality holds for any pair of points
(union bound) is less than 3

n3
n2

2 = 3
2n .
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Despite the dimensionality reduction, the application of the
Johnson-Lindenstrauss Lemma is still computationally expensive.

After we draw the random projection matrix, say M ∈ Rd×k , for
each data point v ∈ Rd , we have to compute Mx which has a
computational cost of

O(ϵ−2 log(n)d)

since M has kd entries and k = O(ϵ−2 log(n)).

In some applications this might be too expensive, raising the
natural question of whether one can do better. Moreover, storing a
large-scale dense matrix M is not very desirable either

We might try to replace the dense random matrix M by a sparse
matrix MS .
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We consider a sparse m × k matrix MS where each row of MS has
just one single non-zero entry of value

√
k/d at a location drawn

uniformly at random.
It follows that for any x ∈ Rd

Ei [(MSx)
2
i ] =

k∑
j=1

P(i = j)
k

m
x2j =

1

m
∥x∥22

Hence

E [∥MSx∥22] = E [
m∑
i=1

(MSxi )
2] = ∥x∥22

This result show MS is satisfactory with respect to expectation.
However it is not with respect to the variance.
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If one coordinate of x is much larger (in absolute value) than all its
other coordinates, then we will need a rather large value for k to
guarantee that ∥MSx∥2 ≈ ∥x∥2.

We can quantify the “peakiness” of a vector via the
peak-to-average ratio measured by the quantity ∥x∥∞

∥x∥2 .
It is easy to see that - assuming x is not the zero-vector - we have

1√
d
≤ ∥x∥∞

∥x∥2
≤ 1

The upper bounds is achieved by vectors with only one non-zero
entry, while the lower bound is met by constant-modulus vectors.
Thus, if we have ∥x∥∞

∥x∥2 ≈ 1√
d
we can hope that sparse subsampling

of x will preserve its Euclidean norm.
This suggests to include a preprocessing step by applying a
rotation so that sparse vectors become non-sparse in the new basis,
thereby reducing their ∞ norm (while their 2-norm remains
invariant under rotation)
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Definition

The Fast Johnson-Lindenstrauss Transform is the map
Ψ : Rd → Rk , defined by Ψ = MSFD where MS and D are
random matrices and F is a deterministic matrix. In particular:

▶ MS is a k × d matrix, where each row of MS has just one
single non-zero entry of value

√
k/d at a location drawn

uniformly at random.

▶ F is either the d × d DFT matrix or the d × d Hadamard
matrix (if it exists), in each case normalized by 1/

√
d to

obtain a unitary matrix.

▶ D is a d × d diagonal matrix whose entries are drawn
independently from {−1,+1} with probability 1/2.
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Theorem (Fast Johnson-Lindenstrauss Transform)

For any ϵ > 0, there is a random matrix Ψ of size k × d with
k = O( 1

ϵ2
log d

δ log 1
δ ) such that, for each x ∈ Rd

(1− ϵ)∥x∥2 ≤ ∥Ψx∥2 ≤ (1 + ϵ)∥x∥2

holds with probability at least 1− δ.
Matrix-vector multiplication with Ψ takes O(d log d + k)
operations.
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The proof of the Fast Johnson-Lindenstrauss Transform Theorem
follows from the two lemmas below.

We first show that with high probability the random rotation FD
produces vectors with a sufficiently low peak-to-average ratio.

Lemma

Let y = FDx , where F and D are as in the definition above. Then

P

(
∥y∥∞
∥y∥2

≥ 2 log(4d/δ)

d

)
≤ δ

2

Next we apply the following result.

Lemma

Conditioned on the event that ∥y∥∞ ≳ 2 log(4d/δ)
d , it holds that

P
(
∥MSy∥22 − 1 ≤ ϵ

)
≤ 1− δ

2



Geometry of high dimensional data

The above results show that, to preserve the distances between n
points up to ϵ accuracy, it suffices to randomly project them to
k = O(ϵ−2 log(n)) dimensions.
This follows from the observation that a random projection
approximately preserves the norm of every point in a set S if it
projects into k = O(ϵ−2 log |S |) dimensions.

Questions:

▶ Can we improve this estimate if S has a special structure?

▶ How can we measure the complexity of S in a way that
explains how many dimensions one needs to project on and
still approximately preserve the norms of points in S?

As we have seen above, the geometry of sets in high dimensions is
often counter-intuitive.



Geometry of high dimensional data

How can we measure the complexity of a set S in Rd?

Convex bodies consist of two parts: the “bulk” and the “outliers”,
where the bulk makes up most of the volume, but has small
diameter (usually looks like a ball); the outliers contribute little to
volume but are large in diameter.
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For instance, the Euclidean ball B2 ∈ Rd inscribed within the ℓ1

ball Bd
1 = {x ∈ Rd : ||x ||1 ≤ 1} and has radius 1/

√
d but

vol(B2)
1/d ≍ vol(B1)

1/d ≍ 1

d

indicating that the ball B2, perhaps inflated by a constant factor,
forms the bulk of B1. The outliers of B1 are the spikes shown in
the figure, which extend far beyond B2 in the coordinate directions.
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Let us compare the unit ℓ1- and ℓ∞-balls

Bd
1 = {x ∈ Rd : ||x ||1 ≤ 1}

Bd
∞ = {x ∈ Rd : ||x ||∞ ≤ 1},

Though these balls have the same unit radius, the ℓ1-ball Bd
1 has

2d vertices whereas the ℓ∞-ball Bd
∞ has 2d vertices.

The polytope Bd
∞ is significantly more complex than Bd

1 .
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To capture the complexity of a set S ⊂ Rd , we could examine the
intersections of S with randomly oriented low-dimensional
subspaces.

According to the above observation, if E is a random
low-dimensional subspace, we should expect that E misses the
spikes of a convex set S and the intersection E ∩S looks like a ball.
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The above observation is the content of Dvoretsky‘s theorem.

Theorem (Dvoretsky‘s Theorem)

Let S ⊂ Rd be an origin symmetric convex body such that the
maximal volume ellipsoid is the Euclidean ball. Let ϵ ∈ (0, 1) and
E be a uniform random subspace (with respect to the Haar
measure) of dimension k = c ϵ−2 log d . Then there exists an R > 0
such that, with high probability, we have

(1− ϵ)B2(R) ⊂ S ∩ E ⊂ (1 + ϵ)B2(R)

where B2(R) ⊂ E is the Euclidean ball of radius R in E .

Note: John’s theorem guarantees that every convex body contains an

ellipsoid of maximal volume. Also, any ellipsoid may be mapped to a

Euclidean ball through an affine transformation. Thus, up to affine

transformation, the assumptions of Dvoretsky‘s theorem are pretty mild.
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To capture the complexity of a set S ⊂ Rd we will look at
intersections with higher-dimensional subspaces that are more
likely to intersect the spikes of S .
Note: Below, we no longer assume that S is a convex body, but
any bounded set.

We defined the width of S in the direction of a unit vector
η ∈ Sd−1 as the smallest slab between two parallel hyperplanes
with normals η that contains S
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Analytically, we can express the width of S ⊂ Rd in the direction
η ∈ Sd−1 as

sup
u, v∈S

⟨η, u − v⟩ = sup
z∈S−S

⟨η, z⟩ .

where the S − S = {u − v : u, v ∈ S} is the Minkowski sum of the
sets S and −S .

This shows that width may be expressed through the support
function of S - a fundamental object in convex analysis:

sup
z∈S−S

⟨η, z⟩ = σS(η) + σS(−η),

where σS(η) = supz∈S ⟨η, z⟩.
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By averaging over all directions we obtain the following notion.

Definition

The spherical mean width of S ⊂ Rd is obtained by averaging
the width uniformly over all directions η ∈ Sd−1, that is,

ω(S) := E
[

sup
z∈S−S

⟨η, z⟩
]
.

In many applications, e.g., statistical learning theory, it is
convenient to replace the spherical random vector η ∼ Unif(Sd−1)
by the spherical Gaussian random vector g ∼ N (0, Id).
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Definition (Gaussian mean width)

Given a bounded set S ⊂ Rd , its Gaussian mean width ω(S) is
defined as

ω(S) = E

[
sup

x∈S−S
⟨gd , x⟩

]
= E

[
sup

x∈S−S
[g t

dx ]

]
, where gd ∼ N (0, Id)

One advantage of using gd ∼ N (0, Id) rather than η ∼ Unif(Sd−1)
is that gd has independent coordinates while η does not.

The mean Gaussian width is invariant under translations,
orthogonal linear transformations, and taking convex hulls.

By the last property, the Gaussian width does not distinguish
between convex and nonconvex sets: ω(S) = ω(conv(S))
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Rotation invariance of the Gaussian distribution shows that the
random variable ∥gd∥ is independent from the random vector
η = gd

∥gd∥ , which happens to be uniformly distributed on the sphere.

Thus, for S ∈ Rd ,

ω(S) = E

[
sup

z∈S−S
∥gd∥⟨η, x⟩

]
= E [∥gd∥]ω(S).

Since E [∥gd∥] ≍
√
d , then ω(S) ≍

√
d ω(S).

Hence, in high dimensions, the standard norm distribution is close
to the uniform distribution on the sphere of radius

√
d , that is,

N (0, 1d) ≈ Unif(
√
d Sd−1).

For gd fixed, we have

sup
x∈S−S

⟨gd , x⟩ = ⟨gd , x1 − x2⟩ = ||gd || · ||x1 − x2||2 ≤
√
d · diam(S).
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As remarked above, variance of the Gaussian width are commonly
used. We called the following one Gaussian width to distinguish it
from the mean Gaussian width. Its properties are very close to the
mean Gaussian width.

Definition (Gaussian width)

Given a compact set S ⊂ Rd , its Gaussian width w(S) is defined
as

w(S) = E max
x∈S

⟨gd , x⟩ = E max
x∈S

[g t
dx ], where gd ∼ N (0, Id)

One can show that

1√
2π

diam(S) ≤ w(S) ≤
√
d

2
diam(S)
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Examples:

▶ ℓ2 ball w(Sd−1) = w(Bd
2 ) = E [∥gd∥2] ≍

√
d

▶ ℓ1 ball w(Bd
1 ) ≍

√
log d

▶ ℓ∞ ball w(Bd
∞) = E∥gd∥1 d =

√
2/π d

▶ finite set w(S) ≤ C
√

log |S | diam(S)

▶ Hypercube Q = [−1, 1]d w(Q) =
√

2
π d

▶ Sparse set K = {x ∈ Rd : ∥x∥ = 1, ∥x∥0 ≤ s}
w(K ) ≍

√
s log 2d/s

Note: since w(S) ≍ w(S)√
d
, then w(Bd

1 ) ≍
√

log d
d showing that the

spherical width of Bd
1 is much smaller than its diameter.
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Theorem (Gordon’s Theorem, 1988)

Let G ∈ Rk×d be a random matrix with independent entries in
N (0, 1) and S ∈ Sd−1 be a closed subset. Then

E max
x∈S

∥ 1
ak
Gx∥ ≤ 1 +

w(S)

ak

E min
x∈S

∥ 1
ak
Gx∥ ≥ 1− w(S)

ak

where ak = E∥gk∥, with gk ∼ N (0, Ik×k) and w(S) is the
Gaussian width of S .
Note that we have

√
k

k+1

√
k ≤ ak ≤

√
k .

The theorem shows that the linear map 1
ak
G preserves the norm of

the points in the set S up to 1± w(S)
ak

.
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We remark that the function f (G ) = maxx∈S∥Gx∥ is 1-Lipschitz:

|max
x∈S

∥G1x∥ −max
x∈S

∥G2x∥| ≤ max
x∈S

|∥G1x∥ − ∥G2x∥|

≤ max
x∈S

|∥(G1 − G2)x∥

≤ ∥G1 − G2∥
≤ ∥G1 − G2∥F

Similarly, the function f̃ (G ) = minx∈S∥Gx∥ is 1-Lipschitz.
Hence, using Gaussian concentration with Gordon’s theorem we get

P

(
max
x∈S

∥Gx∥ ≥ ak + w(S) + t

)
≤ exp(− t2

2 )

P

(
min
x∈S

∥Gx∥ ≥ ak − w(S) + t

)
≤ exp(− t2

2 )

for any t < 0.
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Using the last observation, with ϵ = w(S)+t
ak

we obtain the following

Theorem

Let G ∈ Rk×d be a random matrix with independent entries in

N (0, 1) and S ∈ Sd−1 be a closed subset. Then, for ϵ >

√
w(S)2

a2k
,

with probability larger than 1− 2 exp
(
−a2k

2 (ϵ−
w(S)
ak

)2
)
, we have

(1− ϵ)∥x∥ ≤ ∥ 1
ak
Gx∥ ≤ (1 + ϵ)∥x∥

where ak = E∥gk∥, with gk ∼ N (0, Ik×k) and w(S) is the
Gaussian width of S .
Recall that k

k+1k ≤ a2k ≤ k.
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Remarks:
Since w(S) ≤ C

√
log |S |, this theorem essentially implies the

Johnson Lindenstrauss theorem; not exactly though, since 1
ak
Gx is

not a projection.

In fact, under the assumptions ϵ >

√
w(S)2

a2k
and k ≥ a2k , we have

that k ≥ w(S)2

ϵ2
.

For a finite set S , the Johnson Lindenstrauss theorem claims the
existence of of an almost isometric map from Rd into Rk provided
k = O(ϵ−2 log |S |).
This is consistent with the last theorem requiring k = O(ϵ−2w(S)2.
Recall in fact that w(S)2 = O(log |S |)) for a finite set S .
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The last theorem suggests that if w(S) ≤ ak , a uniformly chosen
random subspace of Rn of dimension n − k (which can be seen as
the nullspace of G ) avoids a set S with high probability.

Theorem (Gordon’s Escape Through a Mesh Theorem)

Let S ∈ Sd−1 be a closed subset. If w(S) < ak , then for a (d − k)
dimensional subspace drawn uniformly from the Grassmanian
manifold we have

P(Λ ∩ S ̸= ∅) ≤ 7

2
exp

(
− 1

18
(ak − w(S))2

)
where ak = E∥gk∥, with gk ∼ N (0, Ik×k) and w(S) is the
Gaussian width of S .
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A remarkable application of Gordon’s Theorem is that one can use
it for sets such as the set of all natural images or the set of all
plausible user-product ranking matrices.

In these cases Gordon’s Theorem suggests that a measurements
corresponding just to a random projection may be enough to keep
geometric properties of the data set in question, that is, it may
allow for reconstruction of the data point from just the projection.

These phenomenon and the sensing savings that arises from it is at
the heart of Compressed Sensing and several recommendation
system algorithms.



Geometry of high dimensional data

Let x ∈ Rd represent a signal (or image) that we wish to acquire
via linear measurements

yi = ati xi for ai ∈ Rd

In general, one would need d linear one-dimensional measurements
to find x, one for each coordinate.

The idea behind Compressed Sensing is that one may be able to
significantly decrease the number of measurements needed if we
know more about the structure of x , a prime example being when
x is known to be sparse, i.e., to have few non-zero entries
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We consider the reconstruction problem consisting of recovering
x ∈ Rd from m linear measurements

y = Ax , where A =


at1
at2
. . .
atm

 ∈ Rm×d

where typically d ≫ m.
We assume that x ∈ Rd is s-sparse, meaning that x has at most s
non-zero entries.

In order for reconstruction to be stable, we will require that A is
almost an isometry, meaning that the ℓ2 distance between Ax1 and
Ax2 should be comparable to the distances between x1 and x2.
Since the difference between two s-sparse vectors is a 2s-sparse
vector, we can alternatively ask for A to approximately preserve the
norm of 2s sparse vectors.
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By Gordon’s Theorem, we can satisfy the condition above by
taking A ∈ Rm×d to have i.i.d. Gaussian entries with m chosen to
satisfy m ≈ w(S2s)

2 where S2s = {x ∈ Sd−1 : ∥x∥0 ≤ 2s} is the
set of 2s sparse vectors, and w(S2s) the Gaussian width of S2s .

We have the following result

Proposition

If s ≤ d , the Gaussian width w(Ss) of Ss = {x ∈ Sd−1 : ∥x∥0 ≤ s}
satisfies

w(Ss)
2 ≲ s log(ds )

This results indicates that m ≈ 2s log( d
2s ) measurements suffice to

stably recover a 2s-sparse vector.
The theory of Compressed Sensing shows this number of
measurement is also sufficient to guarantee that the signal in
question can be recover with efficient algorithms.
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Definition (Restricted Isometry Property)

A matrix A ∈ Rm×d satisfies the Restricted Isometry Property if
for any s-sparse vector x ∈ Rd , there exists a δs , such that

(1− δs)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δs)∥x∥2

We recall that if A is an isometry, then it is a linear transformation
that exactly preserves distance or length.
Additionally, all eigenvalues of A are ±1.
Since an isometry also preserves orthogonality, for any two
orthogonal vectors x , y

x ty = 0 ⇒ x tAtAy = 0
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Proposition

Suppose A ∈ Rm×d satisfies the Restricted Isometry Property
(RIP). Then

1. for any subset S ⊂ [d ] of columns of A (denote as AS) with
|S | = s, the singular values of AS are all between (1− δs) and
(1 + δs);

2. for any two orthogonal vectors x , y ∈ Rd , we have that

|x tAtAy | ≤ 2δs∥x∥∥y∥.

Proof.
1. Follows directly from the definition of RIP.
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2. Without loss of generality, assume that ∥x∥ = ∥y∥ = 1.
Since x and y are orthogonal, then ∥x + y∥2 = 2. Hence, by RIP:

2(1− δs) ≤ ∥A(x + y)∥2 ≤ 2(1 + δs)

and

(1− δs) ≤ ∥Ax∥2 ≤ (1 + δs), (1− δs) ≤ ∥Ay∥2 ≤ (1 + δs)

Hence

2x tAtAy = (x + y)tAtA(x + y)− x tAtAx − y tAtAy

= ∥A(x + y)∥2 − ∥Ax∥2 − ∥Ay∥2

≤ 2(1 + δs)− (1− δs)− (1− δs)

= 4δs

so that
|x tAtAy | ≤ 2δs∥x∥∥y∥.
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Theorem [Candès 2005]

Let y = Ax where x is an s-sparse vector. Assume that A satisfies
the RIP with δs <

1
3 . Then there is a unique solution x∗ = x to

the ℓ1 minimization problem

min
x
∥x∥1 subject to y = Ax .

Theorem

Let A ∈ Rm×d be a matrix with i.i.d. standard Gaussian entries
and assume there exists a constant C such that m ≥ C s ln d

s .
Then the matrix 1√

m
A satisfies the RIP with high probability.

Hence, an s-sparse vector can be efficiently recovered with high
probability from O(s ln d

s ) linear measurements.

Note that, in general, O(s ln d
s ) ≪ d .
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