
MATH 6397 - Mathematics of Data Science

Instructor: Demetrio Labate

April 4, 2023

Course Outline

1. Mathematics of machine learning

1.1 Statistical learning theory

References:

□ Foundations of Data Science, by Blum, Hopcroft and Kannan

□ Foundations of Machine Learning, by Mohri, Rostamizadeh and
Talwalkar

Statistical Learning Theory

Machine Learning

Machine Learning originated in the computer science community
and can be roughly described as the field of study concerned with
the development of methods for learning good models from data.

It is centered around the concepts of data, learning and models.

The main goal of machine learning is to compute a model that can
predict unseen data.

A good model is as good as its ability to formulate an accurate
prediction.

Machine Learning

Standard machine learning tasks:

1. Classification. This is the problem of assigning a category to
each item.

2. Regression. This is the problem of predicting a real value for
each item.

3. Ranking. This is the problem of learning to order items
according to some criterion.

4. Clustering. This is the problem of partitioning a set of items
into homogeneous subsets.

5. Dimensionality reduction (or manifold learning). This
problem consists of transforming an initial representation of
items into a lower-dimensional representation while preserving
some properties of the initial representation.

Machine Learning
There are several machine learning scenarios which differ in the
types of training data available to the learner, the order and
method by which training data is received, and the test data used
to evaluate the learning algorithm.

1. Supervised learning. The learner receives a set of labeled
examples as training data and makes predictions for all unseen
points. This is the most common scenario associated with
classification, regression, and ranking problems.

2. Unsupervised learning. The learner exclusively receives
unlabeled training data, and makes predictions for all unseen
points. Clustering and dimensionality reduction are example of
unsupervised learning problems.

3. Semi-supervised learning. The learner receives a training
sample consisting of both labeled and unlabeled data, and
makes predictions for all unseen points. It may be useful when
unlabeled data is easily accessible but labels are expensive to
obtain. Classification, regression, or ranking tasks, can be
framed as instances of semi-supervised learning.

Machine Learning
4. Transductive inference. As in the semi-supervised scenario,

the learner receives a labeled training sample along with a set
of unlabeled test points. The objective is to predict labels
only for these particular test points.

5. On-line learning. This scenario involves multiple rounds
where training and testing phases are intermixed. At each
round, the learner receives an unlabeled training point, makes
a prediction, receives the true label, and incurs a loss. The
objective is to minimize the cumulative loss over all rounds.

6. Reinforcement learning. The training and testing phases are
intermixed. To collect information, the learner actively
interacts with the environment and receives an immediate
reward for each action. The object of the learner is to
maximize his reward over a course of actions and iterations
with the environment.

7. Active learning. The learner interactively collects training
examples, typically by querying an oracle to request labels for
new points.

Machine Learning

To introduce some basic concepts, let us consider the problem of
recognizing handwritten digits in the MNIST database.

Figure: Handwritten digits and corresponding labels, taken from the
MNIST database.

Each example is a 28× 28 pixel image and so can be represented
as a vector x ∈ X = R784. To each example, is associated a label1

y that identifies the digit value, y ∈ Y = {0, 1, . . . , 9}.
1The label has other names, including target, response variable, and

annotation.

Machine Learning

The goal of machine learning is to build a predictor or model that
maps an input x ∈ X to an output y ∈ Y

x ∈ X 7→ y ∈ Y

In the supervised learning setting, we use a training set consisting
of example-label pairs

S = {(x1, y1), . . . , (xN , yN)} ⊂ X × Y

to tune the parameters of the predictor.

Once the model is trained, it can be used to predict the labels of
new images x ∈ X which are said to comprise a test set.

For instance, the MNIST database contains 60,000 training images
and 10,000 testing images.

Machine Learning

Remark. In many applications, the original input variables are
preprocessed to transform them in some new space of variables
where - it is hoped - the pattern recognition problem will be easier
to solve.

For instance, the images in the MNIST database are typically
translated and scaled so that each digit is contained within a box
of fixed size.

Preprocessing can also include transformations that reduce
dimensionality such as low-dimensional approximations using
principal components as well as mapping into high-dimensional
representations.

This pre-processing stage is sometimes called feature extraction
and feature map is the corresponding transformation.
As a result the input vectors x ∈ X of a machine learning
algorithm are often called feature vectors.

Machine Learning

The predictor can be either a function or a probabilistic model.

▶ Case (1): the predictor is a function

f : x ∈ X 7→ y = f (x) ∈ Y

For example, we can have f : RD → R of the form

f (x) = θt1x + θ0

where θ = (θ0, θ1) ∈ R× RD are the parameters of the
predictor.

▶ Case (2): the predictor is a probabilistic model. For instance,
the predictor is a probability density function with finitely
many parameters such as the normal distribution.

Machine Learning

In general, we can identify three algorithmic phases in the
supervised learning process.

1. Model selection. As part of the learning process, we need to
make high-level decisions about the structure of the predictor,
e.g., the predictor is a polynomial function of a certain degree
or the predictor is a normal distribution.

2. Training (also called parameter estimation). During this
phase, we adjust the parameters of the predictor based on
training data and, for that, we need a measure of quality to
control the performance of the predictor. To perform this
task, there are two main strategies depending on the predictor
being a function or a probabilistic model: empirical risk
minimization and maximum likelihood estimation, resp.

3. Prediction or inference. During this phase, the predictor is
applied to unseen data, i.e., the test data, to generate an
outcome.

Machine Learning

In the supervised learning process described above, the parameters
of the model are determined using the training data.

The performance of the model is assessed on the test data.

In general, there is no guarantee that the model will perform as
well on the test data as on the training data
(more about this topic below)

The ability of the trained model to categorize correctly new
examples (not part of the training set) is called generalization.

Machine Learning

The regression problem is useful to illustrate some fundamental
concepts.

Example: Polynomial Curve Fitting
Suppose we are given a set of data pairs

SN = {(x1, y1), . . . , (xN , yN)} ⊂ Rd × R

Our goal is to exploit this (training) set in order to find a predictor
f (·, θ), parametrized by θ, that we can use to compute the target
value y ∈ R for some new input variable x ∈ Rd .

In practice, after choosing an appropriate class of functions, we
have to find the parameter θ∗ giving the best fit of f to the data
so that we can estimate y as ŷ = f (x , θ∗).

In the polynomial regression problem, the predictor f (·, θ) is
chosen to be a polynomial function.

Machine Learning
We use a polynomial of order M to fit the data

f (x , θ) = θ0 + θt1x + · · ·+ θtMxm =
M∑
j=0

θtj x
j ,

where θ = (θ0, . . . , θM) and θ0 ∈ R, θj ∈ Rd , j = 1, . . . ,M.
Note that, although the polynomial is not a linear function in
general, it is a linear function of the parameter θ.

Predictor functions f (·, θ) that are linear with respect to the
parameter θ are called linear models.

The parameter θ∗ giving the best fit of f to the data is determined
by the introduction of an appropriate loss (or error) function

L(yj , f (xj , θ))

whose output is a non-negative number, the loss, measuring the
error made in this particular prediction.

Machine Learning
Empirical risk minimization

We assume that the example pairs SN = {(x1, y1), . . . , (xN , yN)}
are independent and identically distributed (i.i.d.).
This means that any two data points (xi , yi) and (xj , yj) are
statistically independent of each other and are drawn from the
same (unknown) distribution.

This assumption implies that (for a large sa,ple size N) the
empirical mean is a good estimate of the population mean. Hence
we define the following concept.

Definition (Empirical Risk)

The empirical risk is the average loss on the training data

Remp(f ,SN) =
1

N

N∑
n=1

L(yn, f (xn; θ)).

Machine Learning

If we set the degree of the polynomial as M = 1, then we look for
a predictor function of the form

f (x ; θ0, θ1) = θt1x + θ0, x ∈ Rd , θ1 ∈ Rd , θ0 ∈ R.

Remark

We can map any x = (x1, . . . , xd)
t ∈ Rd to the vector

x̃ = (1, x1, . . . , xd)
t ∈ Rd+1 and similarly any

θ = (θ1, . . . , θd)
t ∈ Rd to θ̃ = (θ0, θ1, . . . , θd)

t ∈ Rd+1.

By the remark, we can redefine the affine function f above as the
linear function f̃ : Rd+1 → R given by

f̃ (x̃ , θ̃) = θ̃t x̃ .

Clearly, using the same observation, we can absorbe the constant
term θ0 into θ̃ for any polynomial function f .

Machine Learning

To find the best parameter θ̃ of the predictor f̃ (·, θ̃) for the given
training data SN , we can use the squared loss function

L(y , f̃ (x , θ̃)) = (y − f̃ (x̃ ; θ̃))2.

Using this loss function, the empirical risk becomes

Remp(f̃ ,SN) =
1

N

N∑
n=1

(yn − f̃ (x̃n, θ̃))
2 =

1

N

N∑
n=1

(yn − θ̃t x̃)2.

To minimize the empirical risk we solve

min
θ̃∈RD+1

1

N

N∑
n=1

(yn − θ̃t x̃)2 = min
θ̃∈RD+1

1

N
∥Y − X̃ θ̃∥2

where Y is the vector containing the labels yn as entries and X̃
containing the data points x̃n as columns. This minimization
problem is known as the least-square linear regression problem.

Machine Learning

We seek to find a predictor that performs well on unseen data.

That is, we want to find a predictor function f (·, θ) that minimizes
the expected risk

Rtrue(f) = Ex ,y [L(y , f (x))]

where y is the label of x and f (x) is the prediction.
Here the expectation Ex ,y is taken over the infinite set of all
possible data and labels.

The notion of expected risk leads to a number of practical
questions, such as:

1. How to estimate the expected risk?

2. How to control the expected risk from the empirical risk?

Machine Learning

Minimization of the empirical risk is no guarantee that the
expected risk is minimized.

Empirical risk minimization may lead to overfitting.

This is the situation where the predictor f (·, θ) fits closely the
training data but does not generalize well on new data, that is,
Remp(f) underestimates Rtrue(f).

Machine Learning

A useful strategy to avoid overfitting is regularization consisting
in finding a compromise between accurate solution of empirical risk
minimization and complexity of the model.

In other words, regularization discourages complex or extreme
solutions to an optimization problem in favor of simpler ones.

Example: Regularized linear least squares.
This regularization strategy adds a penalty term involving the
parameter θ:

minθ̃∈RD

1

N
∥Y − X̃ θ̃∥2 + λ∥θ̃∥2.

The term ∥θ∥2 is a regularizer and λ is the regularization
parameter.

The effect of the regularization is to force the solution to be sparse
in some way which might reflect some prior knowledge about the
problem.

Machine Learning

Predictor as a probability model.
An alternative point view uses a probability model rather than a
function as predictor

In this setting, we assume that data are random variables
associated with a probability density function p(x ; θ), parametrized
by θ, and we want to determine the parameter vector θ that best
fits the data.

We define the negative log-likelihood by

Lx(θ) = − log p(x |θ).

In this expression, θ is the variable (i.e., the quantity we want do
find, for the given data) and x is fixed.

To find the value of the parameter vector θ that best fit the data,
we maximize the likelihood.
Equivalently, we minimize Lx(θ) with respect to θ.

Machine Learning
Example: Gaussian distribution.
Here we assume that we can explain data uncertainty using a
Gaussian probability model, i.e., the uncertainty is a Gaussian noise
with zero mean and fixed variance σ2.
In addition, we also assume a linear model θT xn for prediction.

Hence, for any observation (xn, yn)

p(yn|xn, θ) = N (yn|θT xn, σ2).

Figure: The uncertainty of the data is described using a Gaussian model.

Machine Learning

Under the assumption that the data (x1, y1), . . . , (xN , yN) that are
i.i.d., the likelihood of the whole data set factorizes into a product
of the likelihoods of each individual example

P(Y |X , θ) = ΠN
n=1p(yn|xn, θ),

where
Y = {y1, . . . , yN}, X = {x1, . . . , xN}

and
p(yn|xn, θ) = N (yn|θT xn, σ2) for each n

Machine Learning
Hence, we compute the negative log-likelihood as

L(θ) = −
N∑

n=1

log p(yn|xn, θ)

= −
N∑

n=1

log N(yn|θT xn, σ2)

= −
N∑

n=1

log
1√
2πσ2

exp

(
−yn − θT xn

2σ2

)

=
1

2σ2

N∑
n=1

(yn − θT xn)
2 −

N∑
n=1

log
1√
2πσ2

.

We solve the maximum likelihood estimation by minimizing L(θ).
The solution is equivalent to the least-square regression problem

min
θ

N∑
n=1

(yn − θT xn)
2

The PAC Learning Framework
Some fundamental questions arise when designing and analyzing
algorithms that learn from examples:

▶ What can be learned efficiently?

▶ How many examples are needed to learn successfully?

The Probably Approximately Correct (PAC) learning
framework, introduced by Valiant in 1984, defines the class of
learnable concepts in terms of

1. number of samples needed to achieve an approximate
solution;

2. sample complexity;

3. computational complexity of the learning algorithm.

This approach combines statistical pattern recognition, decision
theory and computational complexity theory to came up with a
notion of learning problems that are feasible in the sense that
there is a polynomial time algorithm that solves them in analogy
with the class of feasible problems in standard complexity theory.

The PAC Learning Framework

Notation:

▶ The input space X containing all possible examples or
instances. For instance, X = R2

▶ The target space or space of labels Y . For instance, in the
case of binary classification, Y = {0, 1}.

▶ A concept is a mapping c : X 7→ Y . A concept class C is a
set of concepts we may wish to learn. For instance, C could
be the set of solid triangles in the plane.

▶ The hypothesis space H is the set of all concepts considered
during the learning process. This space may or may not
coincide with C.

▶ A sample S ⊂ X is a set of instances drawn i.i.d. according to
some unknown distribution D.

The PAC Learning Framework
The learning problem is formulated as follows.

The learner receives a sample S = {x1, . . . , xm} (i.i.d. according to
an unknown distribution D) as well as the corresponding labels
yi = c(xi), i = 1, . . . ,m, which are based on a specific concept
c ∈ C to learn.

The task is then to use the sample S and the corresponding labels
to select a hypothesis hS in an appropriate hypothesis space H
that has a small generalization error with respect to c ∈ C.

Definition

Given a hypothesis h ∈ H, a target concept c ∈ C and an
underlying distribution D, the generalization error or risk of h is
defined by

R(h) = Px∼D(h(x) ̸= c(x)) = E
x∼D

[1h(x) ̸=c(x)]

The PAC Learning Framework

Note. In the basic PAC model, the input space X is assumed to
be {0, 1}n, that is, the set of all possible assignments to n Boolean
variables or attributes; the concepts and hypotheses are subsets of
{0, 1}n.
The error of a hypothesis h with respect to a fixed target concept
c is then defined by

error(h) =
∑

x∈h∆c

D(x)

where ∆ is the symmetric difference and D is the probability
distribution defined on the instance space {0, 1}n.
Equivalently, error(h) is the probability that h and c will disagree
on an instance drawn randomly according to D:

error(h) = Px∼D(h(x) ̸= c(x))

The PAC Learning Framework

Since D and c are unknown, the generalization error of a
hypothesis is not directly accessible to the learner.

However, the learner can measure the empirical error of a
hypothesis on the labeled samples.

Definition

Given a hypothesis h ∈ H and a sample S = (x1, . . . , xm) of size m
with the corresponding labels c(xi), i = 1, . . . ,m, the empirical
error or empirical risk of h is defined by

R̂S(h) =
1

m

m∑
i=1

1h(xi)̸=c(xi)

The PAC Learning Framework

For a fixed h ∈ H, the expectation of the empirical error based on
an i.i.d. sample S of size m is equal to the generalization error:

E
S∼Dm

[R̂S(h)] = R(h)

That is, empirical error is an uubiased estimate of the
generalization error.

Proof: using the fact that the sample is i.i.d., we have

E
S∼Dm

[R̂S(h)] =
1

m

m∑
i=1

E
xi∼D

[1h(xi)̸=c(xi)] =
1

m

m∑
i=1

E
x∼D

[1h(x)̸=c(x)],

which holds for any x in S . Thus

E
S∼Dm

[R̂S(h)] = E
x∼D

[1h(x)̸=c(x)] = R(h).

Note: This observation holds for a fixed h.

The PAC Learning Framework
We now define PAC learning framework.

Let n be a number such that the computational cost of
representing any element x ∈ X is at most O(n) and size(c) be
the maximal cost of the computational representation of c ∈ C.
For example, x may be a vector in Rn, for which the cost of an
array-based representation would be in O(n).

Definition

A concept class C is said to be PAC-learnable if there exists an
algorithm A and a polynomial function q such that, for any ϵ > 0
and δ > 0, for all distributions D on X , and for any target concept
c ∈ C, the following holds for any sample size
m > q(1ϵ ,

1
δ , n, size(c)) :

P
S∼Dm

(R(hS) ≤ ϵ) ≥ 1− δ,

where hS is the hypothesis returned by algorithm A after receiving
a labeled sample S .

The PAC Learning Framework

A concept class C is thus PAC-learnable if the hypothesis returned
by the algorithm after observing a sufficiently many samples
(polynomial in 1

ϵ and 1
δ) is approximately correct (generalization

error is at most ϵ) with high probability (at least 1− δ).

1− δ is the confidence of the estimate
1− ϵ is the accuracy of the hypothesis

If the algorithm A runs in q(1ϵ ,
1
δ , n, size(c)), then C is said to be

efficiently PAC-learnable and the algorithm is called a
PAC-learning algorithm for C.

Remarks.

▶ The PAC framework is distribution-free: no assumption is
made about the distribution from which examples are drawn.

▶ The training sample and the test examples used to define the
error are drawn according to the same distribution D. This is
a necessary assumption for generalization to be possible.

The PAC Learning Framework

Example: Learning axis-aligned rectangles.
Consider the case where the set of instances are points in the plane
X = R2 and the concept class C is the set of all axis-aligned
rectangles lying in R2:

▶ Input space: X = R2

▶ Target space: Y = {−1,+1}
▶ Concept class: C = axis-aligned rectangles

Hence, each concept c ∈ C is the set of points inside a particular
axis-aligned rectangle.

The learning problem consists of determining with small error a
target axis-aligned rectangle using the labeled training sample.

Claim: concept class C of axis-aligned rectangles is PAC-learnable

The PAC Learning Framework

Let R ∈ C be a target axis-aligned rectangle.
If only a sample S is observed, how do we guess R ∈ C?

Suppose R ′ is a hypothesis. The (generalization) error regions of
R ′ are formed by the area within R but outside R ′ (false negatives)
and the area within R ′ but outside R (false positives).

False negatives: points that are labeled as -1 by R ′, which are in
fact labeled with 1.
False positives: that is, points labeled +1 by R ′ which are in fact
labeled with -1.

The PAC Learning Framework
We propose a simple PAC-learning algorithm A:

Given a labeled sample S , A returns the tightest axis-aligned
rectangle R ′ = RS containing the points labeled with 1.

By construction, RS is a subset of R (that is, hs ⊂ c) and does not
produce any false positives.
Thus, the error region of RS is included in R.

If one takes more instances, they may occupy the region in R \ Rs

leading to a smaller generalization error.

The PAC Learning Framework

Let P(R) denote the probability mass of the region defined by R,
that is the probability that a point randomly drawn according to D
falls within R.

Since errors made by our algorithm can be due only to points
falling inside R, we can assume that P(R) > ϵ, where ϵ > 0.
Otherwise, the error of R ′ = RS is less than or equal to ϵ regardless
of the training sample S received.

The PAC Learning Framework

We can define four rectangular regions r1, r2, r3, and r4 along the
sides of R, each with probability at least ϵ/4.
These regions can be constructed by starting with the full
rectangle R and then decreasing the size by moving one side as
much as possible while keeping a distribution mass of at least ϵ/4.

The PAC Learning Framework

If R ′ = RS meets all of these four regions ri , then, because it is a
rectangle, it will have one side in each of these regions.

Its error area, which is the part of R that it does not cover, is thus
included in the union of the regions ri and cannot have probability
mass more than ϵ.
By contraposition, if R(RS) > ϵ, then R must miss at least one of
the regions ri .

The PAC Learning Framework
By contraposition, if R(RS) > ϵ, then R must miss at least one of
the regions ri . In this case

P
S∼Dm

(R(RS) > ϵ) ≤ P
S∼Dm

(∪4
i=1{Rs ∩ ri = ∅})

≤
4∑

i=1

P
S∼Dm

({Rs ∩ ri = ∅})

≤ 4 (1− ϵ
4)

m (since P(ri) ≥ ϵ
4)

≤ 4 e−m
ϵ
4

where, in the last step, we used 1− x ≤ e−x .
For any δ > 0, to ensure P

S∼Dm
(R(RS) > ϵ) ≤ δ, we can impose

4 e−m
ϵ
4 ≤ δ ⇐⇒ m ≥ 4

ϵ log
4
δ (sample complexity)

Thus, if the sample size m is greater than 4
ϵ log

4
δ , we have

P
S∼Dm

(R(RS) > ϵ) ≤ δ

The PAC Learning Framework

In addition, we observe that the computational cost of the
representation of points in R2 and axis-aligned rectangles, which
can be defined by their four corners, is constant.

This proves that the concept class of axis-aligned rectangles is
PAC-learnable and that the sample complexity of PAC-learning
axis-aligned rectangles is of order O(1ϵ log

1
δ)

The PAC Learning Framework
Here is the generalization of the above observation with the
corresponding sample complexity.

Theorem

Consider the input space X = Rd and the concept class C of all
faced-aligned closed hypercubes in Rd . That is each concept c ∈ C
is the set of points inside a particular face-aligned hypercube.
Consider the algorithm that, given a labeled sample S returns the
tightest face-aligned hypercubeVs consisting of points labeled with
+1. Then

P(R(VS) ≤ ϵ) ≥ 1− 2d e−
mϵ
2d .

Hence, for any δ > 0,

P

(
R(VS) ≤

2d

m
log

2d

δ

)
≥ 1− δ,

implying that P(R(VS) ≤ ϵ) ≥ 1− δ for m ≥ 2d
ϵ log 2d

δ .

The PAC Learning Framework

An alternative way to control sample complexity is to give a
generalization bound.

A generalization bound states that, with probability at least 1− δ,
R(RS) is upper bounded by some quantity that depends on the
sample size m and δ.

In the example of the axis-aligned rectangles, this is obtained by
setting δ equal to the bound found above, that is,

δ = 4 e−m
ϵ
4 (δ = 2d e−m

ϵ
2d , for the hypercube)

and solving for ϵ.

This yields that, with probability at least 1− δ, the error of the
algorithm is bounded by

R(RS) ≤ 4
m log 4

δ (≤ 2d
m log 2d

δ , for the hypercube)

The PAC Learning Framework

Remark. The hypothesis set H we considered in the above
example coincided with the concept class C and its cardinality was
infinite. Nevertheless, the problem admitted a simple proof of
PAC-learning.

This situation is not true in general because the specific geometric
argument used in the proof cannot be extended in general.

Additionally, in the example of axis-aligned rectangles, the
hypothesis hS returned by the algorithm was always consistent.

Definition

A hypothesis hS is consistent with a set of training examples S
of a target concept c if and only if hS(x) = c(x) for each training
example x ∈ S .

We present next a generalization bound, for consistent hypotheses,
in the case where the cardinality |H| of the hypothesis set is finite.

The PAC Learning Framework

Theorem: Learning Bound (finite H , consistent case)

Let H be a finite set of functions mapping from X to Y . Let A be
an algorithm that, for any target concept c ∈ H and for a i.i.d.
sample S , returns a consistent hypothesis hS : R̂S(hS) = 0. Then,
for any ϵ, δ > 0, the inequality

P
S∼Dm

(R(hS) ≤ ϵ) ≥ 1− δ holds if m ≥ 1

ϵ
(log |H|+ log

1

δ
).

Equivalently, for any ϵ, δ > 0,

P
S∼Dm

(
R(hS) ≤

1

m
(log |H|+ log

1

δ
)

)
≥ 1− δ

The sample complexity depends on 1
ϵ ,

1
δ and |H|.

The bound is independent of the algorithm A, the target concept
c or the distribution D.

The PAC Learning Framework

Proof. We do not know which consistent hypothesis hS ∈ H is
selectedby the algorithm. This hypothesis further depends on the
training sample S .
Therefore, we need to give a uniform convergence bound, that is, a
bound that holds for the set of all consistent hypotheses, which a
fortiori includes hS .

For any ϵ > 0, define Hϵ = {h ∈ H : R(h) > ϵ}.

The probability that a hypothesis h ∈ H is consistent on a training
sample S drawn i.i.d., that is, that it would have no error on any
point in S , can be bounded as

P(R̂S(h) = 0) ≤ (1− ϵ)m

The PAC Learning Framework

Thus

P
(
∃h ∈ Hϵ : R̂S(h) = 0

)
= P

(
R̂S(h1) = 0 or . . . or R̂S(h|Hϵ|) = 0

)
≤

∑
h∈Hϵ

P(R̂S(h) = 0)

≤
∑
h∈Hϵ

(1− ϵ)m

≤ |H|(1− ϵ)m

≤ |H|e−mϵ

The proof is completed by setting the RHS = δ and solving for ϵ.

The PAC Learning Framework

Remarks. The theorem shows that, when the hypothesis set H is
finite, a consistent algorithm A is a PAC-learning algorithm.

The generalization error of consistent hypotheses is upper bounded
by a term that decreases as a function of the sample size m.

This is a general fact: learning algorithms benefit from larger
labeled training samples.

The price to pay for coming up with a consistent algorithm is the
use of a larger hypothesis set H containing target concepts. The
upper bound in the theorem increases with |H|, albeit dependency
is only logarithmic.

The PAC Learning Framework

Example: Universal concept class.
Let X = {0, 1}n be the set of all Boolean n-component vectors
and Un be the concept class formed by all subsets of X .

• Is this concept class PAC-learnable?

To guarantee a consistent hypothesis, the hypothesis class must
include the concept class, thus |H| ≥ |Un| = 22

n
.

By the Learning Bound Theorem above,

m ≥ 1

ϵ
(log |H|+ log

1

δ
) ≥ 1

ϵ
(2n log 2 + log

1

δ
)

Here, the number of training samples required is exponential in n,
which is the cost of the representation of a point in X , hence
PAC-learning is not guaranteed.
In fact, this universal concept class is not PAC-learnable.

The PAC Learning Framework
Let H be the hypothesis space and h∗ ∈ H be the optimal
hypothesis

h∗ = argmin
h∈H

R(h)

Since we cannot evaluate the risk function R directly, we may
instead approximate R using the empirical risk R̂S evaluated over
the sample space S and approximate h∗ by the hypothesis that
minimizes the empirical risk

hS = argmin
h∈H

R̂S(h)

hS may be suboptimal, but what is the gap?

R(hS)−R(h∗) = (R(hS)− R̂(hS)) + (R̂(hS)−R(h∗))

≤ (R(hS)− R̂(hS)) + (R̂(h∗)−R(h∗))

= sup
h∈H

|R̂(h)−R(h))|

Hence we must control the difference |R̂(h)−R(h))|.

The PAC Learning Framework
Case: finite hypothesis sets - inconsistent case.
In general, there may be no hypothesis in H consistent with the
labeled training sample. This is the typical case in practice where
the learning problems may be difficult or the concept classes more
complex than the hypothesis set used by the learning algorithm.

In this case, Hoeffding’s inequality in combination with the above
observation that E

S∼Dm
[R̂S(h)] = R(h) gives that, for any fixed

hypothesis h : X → {0, 1},

P
S∼Dm

(
|R̂S(h)−R(h)| ≥ ϵ

)
≤ 2 e−2mϵ2

Setting RHS = δ and solving for ϵ gives the following bound.

Corollary (Generalization bound - fixed hypothesis)

Fix a hypothesis h : X → {0, 1}. For any δ > 0,

P
S∼Dm

(
|R(h)− R̂S(h)| ≤

√
log 2

δ
2m

)
≥ 1− δ.

The PAC Learning Framework
Example. Imagine tossing a biased coin that lands heads with
probability p, and let our hypothesis be the one that always
guesses tails.
Then the true error rate is R(h) = p and the empirical error rate
R̂S(h) = p̂, where p̂ is the empirical probability of heads based on
the training sample drawn i.i.d.
According to the generalization bound, for any δ > 0, with
probability at least 1− δ,

|p − p̂| ≤
√

log 2
δ

2m

If we set δ = 0.02 and choose a sample of size m = 500, with
probability at most 98%, the following bound is guaranteed

|p − p̂| ≤
√

log 10
1000 ≈ 0.048.

Remark. We cannot use this estimate to bound the generalization error

of the hypothesis hS returned by a learning algorithm when training on a

sample S since hS is not a fixed hypothesis but a random variable

depending on the training sample S drawn.

The PAC Learning Framework

Unlike the case of a fixed hypothesis for which the expectation of
the empirical error is the generalization error (we used the
observation that, for h fixed, E

S∼Dm
[R̂S(h)] = R(h)), now the

generalization error R(hS) is a random variable and, in general,
distinct from the expectation E [RS(hS)], which is a constant.

Theorem (Learning Bound - finite H , inconsistent case)

Let H be a finite hypothesis set. Then, for any δ > 0, with
probability at least 1− δ, the following inequality holds for all
h ∈ H

R(h) ≤ R̂S(h) +

√
log |H|+ log 2

δ

2m

The PAC Learning Framework

Proof. Let h1, . . . , h|H| be the elements of H. Using the
observation valid for a single hypothesis, we obtain

P
(
∃h ∈ H : |R̂S(h)−RS(h)| > ϵ

)
= P

(
|R̂S(h1)−RS(h1)| > ϵ or . . . or |R̂S(h|Hϵ|)−RS(h|Hϵ|)| > ϵ

)
≤
∑
h∈H

P(|R̂S(h)−RS(h)| > ϵ)

≤ 2|H|e−2mϵ2

The proof follows by setting the RHS = δ and solving for ϵ.

The PAC Learning Framework

Remark. The theorem shows that, for a finite hypothesis set H,

R(h) ≤ R̂S(h) + O

(√
log |H|
m

)

where log |H| can be interpreted as the number of bits needed to
represent H.

As in the consistent case, a larger sample size m guarantees better
generalization even though here the bound is a less favorable
function of log |H|

m as it varies as the square root of this term.

The bound suggests seeking a trade-off between reducing the
empirical error versus controlling the size of the hypothesis set: a
larger hypothesis set is penalized by the second term but could
help reduce the empirical error, that is the first term. But, for a
similar empirical error, it suggests using a smaller hypothesis set.

Rademacher Complexity

Unfortunately, the sample complexity bounds discussed above are
uninformative when dealing with infinite hypothesis sets - which
is the typical situation found in machine learning applications.

Problem: How can we achieve efficient learning from a finite
sample if the hypothesis set H is infinite?

The general idea consists essentially of reducing the infinite case to
the analysis of finite sets of hypotheses.

There are different techniques for that reduction, each relying on a
different notion of complexity for the family of hypotheses.
One such technique is Rademacher complexity.

I will show that the computation of the empirical Rademacher
complexity is impractical (NP-hard) for some hypothesis sets.
Thus, I will subsequently introduce two other notions, the growth
function and the VC-dimension.

Rademacher Complexity

Definition (Rademacher complexity)

Given a set of vectors A ⊂ Rm the Rademacher complexity is
defined as

Rm(A) = E
σ

[
sup
a∈A

1

m

m∑
i=1

σiai

]
where the expectation is taken over σ = (σ1, . . . , σm)

t with σi
independent random variables taking values in ±1 according to the
Rademacher distribution, i.e., P(σi = 1) = P(σi = −1) = 1

2

Examples:
Let A = {(a1, a2)} ⊂ R2 (a single vector). Then
R1(A) =

1
2(

1
4(a1+12)+

1
4(a1−12)+

1
4(−a1+12)+

1
4(−a1−12)) = 0

Let A = {(1, 1), (1, 2)} ⊂ R2. Then
R2(A) = 1

2 · 1
4(max(1 + 1, 1 + 2) + max(1− 1, 1− 2)

+ max(−1 + 1,−1 + 2) + max(−1− 1,−1− 2)) = 1
4

Rademacher Complexity
Notation:
X : input space
Y : target space
H hypothesis space
G = {g : (x , y) 7→ L(h(x), y), h ∈ H}: family of loss functions
associated to H

Definition (Rademacher complexity of function class)

Let G be a family of (measurable) loss functions associated to H
and S = {(x1, y1), . . . , (xm, ym)} ⊂ X × Y be a fixed sample of
size m. The empirical Rademacher complexity of G with respect
to the sample S is defined as

RS(G) = E
σ

[
sup
g∈G

1

m

m∑
i=1

σig(xi , yi)

]

where σ = (σ1, . . . , σm)
t with σi being Rademacher random

variables.

Rademacher Complexity

Interpretation:
Let gS = (g(x1, y1), . . . , g(xm, ym))

t

The empirical Rademacher complexity of G with respect to the
sample S can be written as

RS(G) = E
σ

[
sup
g∈G

σ · gS
m

]

The inner product σ · gS measures the correlation of gS with the
vector of random noise σ (Rademacher r.v.).

Hence RS(G) measures on average how well the function class G
correlates with random noise on S .
Richer or more complex families G can generate more vectors gS
and thus better correlate with random noise, on average.

Rademacher Complexity

Definition (Rademacher complexity)

Let D be the distribution according to which samples are drawn.
For any m ≥ 1, the Rademacher complexity of G is the
expectation of the empirical Rademacher complexity over all
samples of size m drawn according to D:

Rm(G) = E
S∼Dm

[RS(G)]

The Rademacher complexity measures the richness of the class of loss

functions G. We can motivate the Rademacher complexity from the

binary classification. Let G be the classification functions mapping the

data to its label σi ∈ {−1, 1}. One can show that

supg∈G
∑m

i=1 σig(xi , yi) is equivalent to minimizing the classification

error. Taking the expectation over all σ amounts to considering all

possible labeling of the samples. If G consists of a single function, then

Rm(G) = 0; if G shatters any sample of size m, then Rm(G) = 1.

Rademacher Complexity

We have the following generalization bounds based on Rademacher
complexity.

Theorem

Let G be a family of functions mapping from X × Y → [0, 1].
Then, for any δ > 0, with probability at least 1− δ over the draw
of i.i.d. samples of size m, for all g ∈ G we have

E [g(x , y)] ≤ 1
m

m∑
i=1

g(xi , yi) + 2Rm(G) +

√
log 1

δ

2m

E [g(x , y)] ≤ 1
m

m∑
i=1

g(xi , yi) + 2Rm(G) + 3

√
log 2

δ

2m

Compared with the generalization bound stated in the section

above, the term
√

log |H|
m is replaced by the Rademacher complexity

Rm(G).

Rademacher Complexity

The proof of the theorem requires the following result from
probability (a refinement of Hoeffding’s inequality).

McDiarmid’s inequality

Let x1, . . . , xm ∈ X be a set of m ≥ 1 independent random
variables and assume that there exist constants c1, . . . , cm such
that f : Xm 7→ R satisfies

|f (x1, . . . , xi , . . . , xm)− f (x1, . . . , x
′
i , . . . , xm)| ≤ ci

for all i and any points x1, . . . , xm, x
′
i ∈ X . Then, with the notation

f (S) = f (x1, . . . , xm), for any ϵ > 0, we have

P (f (S)− E [f (S)] ≥ ϵ) ≤ exp
(

−2ϵ2∑m
i=1 c

2
i

)
P (f (S)− E [f (S)] ≤ −ϵ) ≤ exp

(
−2ϵ2∑m
i=1 c

2
i

)

Rademacher Complexity

A straightforward calculation yields the following corollary.

Corollary (McDiarmid’s inequality)

Under the assumptions above, suppose, in addition, that ci ≤ 1
m

for all i . Then

P (|f (S)− E [f (S)]| ≥ ϵ) ≤ 2e−2ϵ2m.

Remark. By setting the RHS = δ and solving for ϵ, it follows that,
for any δ > 0,

P

(
|f (S)− E [f (S)]| ≤

√
log 2

δ
2m

)
≥ 1− δ

Rademacher Complexity

Proof of Theorem. For a sample S = ((x1, y1), . . . , (xm, ym)) and
any g ∈ G, we denote the empirical average of g over S by

Ês [g] =
1

m

m∑
i=1

g(xi , yi).

The main idea of the proof consists of applying McDiarmid’s
inequality to the function Φ defined, for any sample S , as

Φ(S) = sup
g∈G

E [g]− ÊS [g]

Rademacher Complexity

Let S and S ′ be two samples differing by exactly one point, say
(xi , yi).
Since the difference of suprema does not exceed the supremum of
the difference, we have

|Φ(S ′)−Φ(S)| ≤ sup
g∈G

|ÊS [g]−ÊS ′ [g]| ≤ 1

m
sup
g∈G

|g(xi , yi)−g(x ′i , y
′
i)| ≤

1

m

By McDiarmid’s inequality (Corollary), we have that, for any
δ > 0, with probability at least 1− δ

2 ,

Φ(S) ≤ E
S
[Φ(S)] +

√
log 2

δ

2m

Rademacher Complexity
Next, observing that points in S ′ are sampled i.i.d. and, thus,
E [g] = ES ′ [ÊS ′(g)], we have

E
S
[Φ(S)] = E

S
[sup
g∈G

(E [g]− ÊS(g))]

= E
S
[sup
g∈G

E
S′
[ÊS ′(g)− ÊS(g)]]

≤ E
S,S′

[sup
g∈G

(ÊS ′(g)− ÊS(g))

= E
S,S′

[sup
g∈G

1
m

m∑
i=1

(g(x ′i , y
′
i)− g(xi , yi))]

= E
σ,S,S′

[sup
g∈G

1
m

m∑
i=1

σi (g(x
′
i , y

′
i)− g(xi , yi))]

= E
σ,S′

[sup
g∈G

1
m

m∑
i=1

σi (g(x
′
i , y

′
i)]|+ E

σ,S
[sup
g∈G

1
m

m∑
i=1

(−σi)(g(xi , yi)]

= 2E
σ,S
[sup
g∈G

1
m

m∑
i=1

σi (g(xi , yi)]| = 2Rm(G)

Rademacher Complexity

To derive a bound in terms of RS(G), we observe that, by
definition, changing one point in S changes RS(G) by at most 1

m .

By applying Mc Diarmid’s inequality again, we have that, for any
δ > 0, with probability 1− δ/2

Rm(G) ≤ RS(G) +

√
log 2

δ

2m

By using the union bounds and combining the estimate above with
the estimate for Φ(S) we obtain that, for any δ > 0, with
probability at least 1− δ, we have

Φ(S) ≤ Rm(G) + 3

√
log 2

δ

2m

Rademacher Complexity

Remark. The key idea of the proof is in the step
E
S,S′

[supg∈G
1
m

∑m
i=1(g(x

′
i , y

′
i)− g(xi , yi))] = E

σ,S,S′
[supg∈G

1
m

∑m
i=1 σi (g(x

′
i , y

′
i)− g(xi , yi))]

where we introduce the Rademacher random variables.
Setting σi = −1 has the same effect as swapping xi and x ′i . To see
why this step is allowed, imagine that after choosing S and S ′ we
update both sets by swapping xi and x ′i with probability 1/2 for
i = 1, . . . ,m. Now this swapping operation leaves the distribution
over pairs of sets S and S ′ unaffected: each possible outcome of S
and S ′ has the same probability before and after the swapping
procedure. Thus the expected values on the two sides are equal.

Rademacher Complexity

The following result relates the empirical Rademacher complexities
to the family of loss functions associated the case of binary loss.

Proposition

Let H be a family of (measurable) functions taking values in
{−1,+1} and let G be the family of loss functions associated to H
for the zero-one loss:

G = {(x , y) 7→ 1h(x)̸=y , h ∈ H}.

For any sample S = {(x1, y1), . . . , (xm, ym)} of elements in
X × {−1,+1}, let SX denote its projection over X , that is
SX = (x1, . . . , xm). Then, the following relation holds

RS(G) =
1

2
RSX (H).

Rademacher Complexity

Proof of Proposition.
For S = {(x1, y1), . . . , (xm, ym)} ∈ X × {−1,+1} the empirical
Rademacher complexity of G can be written as

RS(G) = E
σ
[sup
h∈H

1
m

m∑
i=1

σi 1h(xi)̸=yi]

= E
σ
[sup
h∈H

1
m

m∑
i=1

σi
1−yi h(xi)

2]

= 1
2Eσ

[sup
h∈H

1
m

m∑
i=1

(−σi) yi h(xi)]

= 1
2Eσ

[sup
h∈H

1
m

m∑
i=1

σi h(xi)] =
1
2RSX (H),

where we used the fact that, for a fixed yi ∈ {−1,+1}, σi and
(−σi yi) are distributed in the same way.

Rademacher Complexity
By taking expectations, the last proposition implies that, for any
m ≥ 1, Rm(G) = 1

2Rm(H). Hence, combining the proposition and
the theorem above, we derive the following bounds.

Theorem - Rademacher complexity bounds for binary
classification

Let H be a family of (measurable) functions taking values in
{−1,+1} and let D be be the distribution over the input space X .
Then, for any δ > 0, with probability at least 1− δ over a sample
S of size m drawn according to D, for any h ∈ H we have

R(h) ≤ R̂S(h) +Rm(H) +

√
log 1

δ

2m

R(h) ≤ R̂S(h) +Rm(H) + 3

√
log 2

δ

2m

Growth function

The growth function measures the richness of a hypothesis class.

Definition

The growth function or shatter coefficient GrH : N → N for a
hypothesis set H is defined by

GrH(m) = max
{x1,...,xm}∈X

|{h(x1), . . . , h(xm) : h ∈ H}|,

and it counts the maximum number of distinct ways in which m
points can be classified using the hypotheses h in H.

Unlike the Rademacher complexity, the growth function does not
depend on the distribution but it is purely combinatorial.

Growth function

Let S = {(x1, y1), . . . , (xm, ym)} ⊂ X ×Y and H be the hypothesis
class.

Definition

Given a set x1, . . . , xm ⊂ X , the dichotomy generated by h ∈ H is
the sequence

(h(x1), . . . , h(xm)).

Thus, GrH counts the maximum number of dichotomies realized by
the hypothesis space H on any set of m points from the input
space X .

Theorem

Let H be the hypothesis class. For any set of size m, we have

GrH(m) ≤ 2m.

Growth function

Example. Consider the hypothesis class H consisting of
one-dimensional threshold functions and let S = {1, 2, 3, 4, 5, 6}.

It is easy to see that have we have 7 dichotomies realized by this
hypothesis class.

Lemma (Growth function for one-dimensional threshold
function)

Let H be the hypothesis class of one-dimensional threshold
functions and let S = {x1, . . . , xm} be a list of numbers. Then

GrH(m) = m + 1.

Growth function

Theorem (Massart’s Lemma)

Let A ⊂ Rm be a finite set, with r = maxx∈A∥x∥2. Then

E
σ
[1m sup

x∈A

m∑
i=1

σi xi] ≤
r
√
2 log |A|
m

,

where the terms σi are independent uniform random variables
taking values in {−1,+1} and x = (x1, . . . , xm).

Growth function

Massart’s Lemma follows from the Maximal inequality below
observing that the random variables σixi are independent and take

values in [−|xi |,+|xi |] with
√∑m

i=1 x
2
i ≤ r .

Maximal inequality

Let X1, . . . ,Xn be real-valued random variables such that, for all
j ∈ [n], Xj =

∑m
i=1 Yi ,j where, for each fixed j ∈ [n], the terms Yi ,j

are independent zero mean random variables taking values in the
interval [−ri ,+ri] for some ri > 0. Then

E [max
j∈[n]

Xj] ≤ r
√
2 log n,

with r =
√∑m

i=1 r
2
i .

Growth function

A corollary of Massart’s Lemma is that we can bound the
Rademacher complexity using the growth function.

Theorem

Let G be a family of (measurable) loss functions taking values in
{−1,+1}, then

Rm(G) ≤
√

2 logGrG(m)

m
.

Growth function

Proof. For a fixed sample S = (x1, . . . , xm), we denote by GS the
set of vectors of function values (g(x1), . . . , g(xm)) where g ∈ G.

Since each g takes values in {−1,+1}, the norm of these vectors
is bounded by

√
m. By Massart’s Lemma, it follows that

Rm(G) = E
S

[
E
σ

[
sup
g∈GS

1

m

m∑
i=1

σig(xi)

]]
≤ E

S

[√
m
√
2 log |GS |
m

]

By definition, |GS | is bounded by the growth function. Hence

Rm(G) ≤ E
S

[√
m
√
2 logGrG(m)

m

]
=

√
2 logGrG(m)

m

Growth function

Combining the Rademacher complexity bound with the last
observation yields immediately the following generalization bound
in terms of the growth function.

Corollary (Growth function generalization bound)

Let H be a family of (measurable) loss functions taking values in
{−1,+1}. Then, for any δ > 0, with probability at least 1− δ, for
any h ∈ H we have

R(h) ≤ R̂S(h) +

√
2 logGrH(m)

m
+

√
log 1

δ

2m

VC dimension

The computation of the growth function is not always practical
since, by definition, it requires computing Gr(m) for all m ≥ 1.

The VC-dimension (Vapnik-Chervonenkis dimension) is also a
purely combinatorial notion that is directly related to the growth
function but it is often easier to compute.

Recall that, given a hypothesis set H, a dichotomy of a set S is
one of the possible ways of labeling all points of S using a
hypothesis h ∈ H.

Given a set S of m ≥ 1 points, we say that H shatters S when H
realizes all possible dichotomies of S , that is when Gr(m) = 2m.

VC dimension

Definition

The VC dimension of a hypothesis set H is the cardinality of the
largest set S that can be shattered by H, that is

VCdim(H) = max{m : GrH(m) = 2m}.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = ∞.

Note: The definition of VC dimension states that, if there exists a
set of d points that can be shattered by H and there is no set of
d + 1 points that can be shattered by H, then VCdim(H) = d .
The definition does not require that any set of d points can be
shattered by H.

VC dimension

Example: Interval hypothesis class. Let H be the set of
intervals on the real line such that h(x) = 1 iff x is in the interval.

It is easy to see that H shatters a set consisting of 2 points.

However, it cannot shatter 3 points

Thus VCdim(H) = 2

VC dimension

Example: Linear classifiers in R2. Let H be the set of linear
classifiers in R2. That is, we want to learn c : X 7→ {−1,+1}
using the hypothesis set of lines in R2.

What is the VC dimension of H?

A set of 3 non-collinear points in R2 can be shattered by H, that
is, we can realize all possible 23 = 8 dichotomies over these points.

VC dimension

Note that 3 collinear points in R2 cannot be shattered by H as
shown below

This does not exclude that VCdim(H) = 3.

Note. As we remarked, VCdim(H) = d does not imply that all
sets of size d or less are shattered and, in fact, this is typically not
the case. It is sufficient that one set of size d is shattered by H.

VC dimension
To conclude that VCdim(H) = 3, we need to show that four
points in R2 cannot be shattered. The argument is give below.
After removing the case with 3 collinear points, we are left with
two cases:

(i) The four points lie on their convex hull, In this case, a
positive labeling for one diagonal pair and a negative labeling
for the other diagonal pair cannot be realized.

(ii) Three of the four points lie on the convex hull and the
remaining point is internal. In this case, a labeling which is
positive for the points on the convex hull and negative for the
interior point cannot be realized.

VC dimension
We can extend the result to Rd to show that VCdim(H) = d + 1.

Example: Hyperplane classifiers in Rd . Let H be the set of
linear classifiers in Rd . That is, we want to learn
c : X 7→ {−1,+1} using the hypothesis consisting of hyperplanes
in Rd .

We derive a lower bound of VCdim(H) by starting with a set of
d + 1 points in Rd , setting x0 to be the origin and defining
xi ∈ Rd , for i ∈ {1, 2, . . . , d} as the point whose i-th coordinate is
1 and all others are 0.
Let y0, y1, . . . , yd ∈ {−1,+1} be an set of labels for x0, x1, . . . , xd .
Let w be the vector whose i-th coordinate is yi . Then the classifier
defined by the hyperplane of equation

w · x + y0
2

shatters x0, x1, . . . , xd since, for each i ∈ {0, . . . , d}

sgn
(
w · xi + y0

2

)
= sgn(yi +

y0
2) = yi

VC dimension

To obtain an upper bound, we show that no set of d + 2 points
can be shattered by half space using Radon’s Theorem.

Theorem (Radon’s theorem)

Any set X of d +2 points in Rd can be partitioned into two subsets
X1 and X2 such that the convex hulls of X1 and X2 intersect.

By Radon’s theorem, a set X of d + 2 points can be partitioned
into two sets X1 and X2 such that their convex hulls intersect.
When two sets of points X1 and X2 are separated by a hyperplane,
their convex hulls are also separated by that hyperplane.
Thus, X1 and X2 cannot be separated by a hyperplane and X is
not shattered.
Combining our lower and upper bounds, we have proven that
VCdim(H) = d + 1 when H is the set of hyperplanes in Rd .

VC dimension

Proof of Radon’s theorem. Let X = {x1, . . . , xd+2} and consider
the system of equations

d+2∑
i=1

αixi = 0 and
d+2∑
i=1

αi = 0 (1)

This is a system of d + 1 equation (d equations from the first, one
for each component, 1 from the second one) and d + 2 unknowns.
Hence the system admits a non-zero solution β1, . . . , βd+1.

Since
∑d+2

i=1 βi = 0, both sets J1 = {i ∈ [d + 1] : βi > 0} and
J2 = {i ∈ [d + 1] : βi ≤ 0} are non-empty.

In addition, the sets

X1 = {x1 : i ∈ J1} and X2 = {x1 : i ∈ J2}

form a partition of X .

VC dimension
Let β =

∑
i∈J1 βi .

Since
∑d+2

i=1 βi = 0, then β =
∑

i∈J1 βi = −
∑

i∈J2 βi .
Thus, by the first equation in (1)∑

i∈J1

βi
β
xi =

∑
i∈J2

−βi
β

xi

with
∑

i∈J1
βi
β =

∑
i∈J2

−βi
β = 1 and βi/β ≥ 0 for i ∈ J1 and

−βi/β ≥ 0 for i ∈ J2.

By the definition of convex hull, this implies that
∑

i∈J1
βi
β xi

belongs to both the convex hull of X1 and X2.

Definition. For X ⊂ Rn, the convex hull of X is

conv(X) =

{
m∑
i=1

αixi : m ≥ 1, xi ∈ X , αi ≥ 0,
m∑
1

αi = 1

}

VC dimension

Example: Axis-aligned Rectangles. We show first that
VCdim(H) ≥ 4 by considering 4 points in a diamond pattern.
As the figure shows (4 representative cases) all 24 = 16
dichotomies can be realized.

For any set of five distinct points, if we construct the minimal
axis-aligned rectangle containing these points, one of the five
points is in the interior of the rectangle.

If we assign a negative label to this interior point and a positive
label to each of the remaining four points, there is no axis-aligned
rectangle that can realize this labeling. Hence, no set of five
distinct points can be shattered. Thus VCdim(H) = 4.

VC dimension

Example: Convex d-gons in R2. The hypothesis class consists of
convex polygons with d sides. We will show that it shatters 2d + 1
points. [Note: rectangles above were required to be aligned]

To get a lower bound, we select 2d + 1 points that lie on a circle,
and for a particular labeling, if there are more negative than
positive labels, then the points with the positive labels are used as
the polygon’s vertices; otherwise, the tangents of the negative
points serve as the edges of the polygon.

To derive an upper bound, it can be shown that choosing points
on the circle maximizes the number of possible dichotomies, and
thus VCdim(H) = 2d + 1.

VC dimension
Remark. The examples presented above appear to suggest that
the VC dimension of H coincides with the number of free
parameters defining H. For example, the number of parameters
defining hyperplanes matches their VC dimension.
However, this situation does not hold in general.

Example. Sine functions. Consider the hypothesis class H of
function fα(x) = sin(αx), α ∈ R.
We use fα to classify the points on the real line: a point is labeled
positively if it is above the curve, negatively otherwise.

VC dimension

Although this family of functions fα is defined via a single
parameter, it can be shown that VCdim(H) = ∞.

Given any m ∈ N, let xi = 10−i , i = 1, . . . ,m

Let y1, . . . , ym be a set of labels in {−1,+1}.

Then sgn(fα(x)) gives the correct labels if we choose α to be

α = π(1 +
m∑
i=1

(1− yi)10
i

2
)

Since m is arbitrary, this shows that VCdim(H) = ∞.

VC dimension

How is the VC dimension related to the cardinality of the
hypothesis class?

Proposition

For every finite hypothesis classes H, we have VCdim(H) < log |H|.

Proof. Suppose that VCdim(H) = d . This implies that
GrH(d) = 2d .

Also, for every set of size m > 1, we have that GrH(m) ≤ |H|.
Hence, it must be 2d = GrH(d) ≤ |H|.

By taking log on both sides, we conclude that

d ≤ log |H|.

VC dimension

The next result clarifies the connection between the notions of
growth function and VC dimension.

Theorem (Sauer’s lemma)

Let H be a hypothesis set with VCdim(H) = d . Then, for all
m ∈ N the following inequality holds:

GrH(m) ≤
d∑

i=0

(
m

i

)

Sauer’s lemma can be proved using an argument by induction.

VC dimension

The significance of Sauer’s lemma can be seen below.

Corollary

Let H be a hypothesis set with VCdim(H) = d . Then for all m ≥ d

GrH(m) ≤
(em

d

)d
= O(md)

This shows that the growth function only exhibits two types of
behavior:

▶ either VCdim(H) = d < ∞, in which case GrH(m) = O(md);

▶ or VCdim(H) = ∞, in which case GrH(m) = 2m.

VC dimension

Proof. Using Sauer’s lemma we have

GrH(m) ≤
d∑

i=0

(
m

i

)

≤
d∑

i=0

(
m

i

)
(md)

d−i

= (md)
d

d∑
i=0

(
m

i

)
(dm)i

= (md)
d(1 + d

m)m (binomial thm.)

≤ (md)
d(ed/m)m (ineq: (1 = +x) ≤ ex)

= (md)
ded = (me

d)d

VC dimension
Using the relationship between VC dimension and the growth
function, we derive the following generalization bounds based on
the VC dimension.

Corollary (VC dimension generalization bounds)

Let H be a family of functions taking values in {−1,+1} with VC
dimension d . Then, for any δ > 0, with probability at least 1− δ,
the following holds for all h ∈ H

R(h) ≤ R̂S(h) +

√
2d log m

d

m
+

√
log 1

δ

2m

This shows that the generalization bound is of the form

R(h) ≤ R̂S(h) + O

(√
log m

d
m
d

)
+

√
log 1

δ

2m

emphasizing the importance of the ratio m
d for generalization.

VC dimension

Proof. Using the growth function generalization bound, we have
that

R(h) ≤ R̂S(h) +

√
2 logGrH(m)

m
+

√
log 1

δ

2m

Using Sauer’s lemma, it follows that

R(h) ≤ R̂S(h) +

√
2 log(me

d)d

m
+

√
log 1

δ

2m

= R̂S(h) +

√
2d log me

d

m
+

√
log 1

δ

2m
.

VC dimension

Lower bound estimates are shown by finding for any algorithm a
‘bad’ distribution.

Theorem - Lower bound, realizable case. Let H be a
hypothesis set with VC dimension d > 1. Then, for any m ≥ 1 and
any learning algorithm A, there exist a distribution D over X and a
target function f ∈ H such that

P
S∼D

(
R(hS , f) >

d − 1

32m

)
≥ 0.01.

Hence, for any algorithm A, there exists a ‘bad’ distribution over
X and a target function f for which the error of the hypothesis
returned by A is a multiple of d

m with some constant probability.

The result implies in particular that PAC learning in the realizable
case is not possible when the VC dimension is infinite - further
demonstrating the key role of VC dimension in learning.

VC dimension

Theorem - Lower bound, non-realizable case. Let H be a
hypothesis set with VC dimension d > 1. Then, for any m ≥ 1 and
any learning algorithm A, there exist a distribution D over
X × {0, 1} such that

P
S∼D

(
R(hS)− inf

h∈H
R(h) >

√
d

320m

)
≥ 0.01.

Equivalently, for any learning algorithm, the sample complexity
verifies

m ≥ d

320ϵ2

Hence, for any algorithm A, there exists a ‘bad’ distribution over
X × {0, 1} for which the error of the hypothesis returned by A is a

multiple of
√

d
m with some constant probability.

In particular, with an infinite VC dimension, agnostic PAC learning
is not possible.

VC dimension

We showed that, given any δ > 0, with probability at least 1− δ
and for all h ∈ H, if h is consistent, then

R(h) = O(
1

m
(log |H|+ log

1

δ
)) = O(

1

m
(logGrH(m) + log

1

δ
))

and m ≥ 1
ϵ (log |H|+ log 1

δ)

Additionally, we observed that if VCdim(H) = d , then
GrH(m) = O(md) and logGrH(m) = O(d logm). Hence we have:

Proposition

Let VCdim(H) = d . For all consistent h ∈ H, given any δ > 0,
with probability at least 1− δ, we have that

R(h) = O(
1

m
(d logm + log

1

δ
)) = O(

d

m
logm − 1

m
log δ)

Model Selection

A key problem in the design of learning algorithms:

How should the hypothesis set H be chosen?

This is known as the model selection problem.

A rich or complex enough hypothesis set could contain the ideal
classifier.

On the other hand, learning with such a complex family becomes a
very difficult task.

More generally, the choice of H is subject to a trade-off that can
be analyzed in terms of the estimation and approximation errors.

Model Selection

In the most general scenario of supervised learning, the training
data is a labeled sample S drawn i.i.d. according to a distribution
D defined over X × Y , where X is the input space and Y is the
set of labels.

The learning problem is to find a hypothesis h ∈ H with small
generalization error

R(h) = P
(x,y)∼D

(h(x) ̸= y)

This general scenario is referred to as the stochastic scenario.
Within this setting, the output label is a probabilistic function of
the input and captures many real-world problems where the label
of an input point is not unique.

The natural extension of the PAC-learning framework to this
setting is known as the agnostic PAC-learning.

Model Selection

As above, let n be a number such that the computational cost of
representing any element x is at most O(n) and denote by size(c)
the maximal cost of the computational representation of c ∈ C.

Definition (Agnostic PAC-learning)

Let C be a concept class and H a hypothesis set. A is an agnostic
PAC-learning algorithm if there exists a polynomial function q such
that for any ϵ > 0 and δ > 0, for all distributions D on X ×Y , and
for any target concept c the following holds for any sample size
m > q(1ϵ ,

1
δ , n, size(c)) :

P
S∼Dm

(R(hS)−min
h∈H

R(h) ≤ ϵ) ≥ 1− δ

If further A runs in polynomial time q(1ϵ ,
1
δ) then it is said to be an

efficient agnostic PAC-learning algorithm.

Model Selection

When the label of a point can be uniquely determined by some
measurable function f : X → Y (with probability one), then the
scenario is said to be deterministic. In that case, it suffices to
consider a distribution D over the input space.

The training sample is obtained by drawing (x1, . . . , xm) according
to D and the labels are obtained via f : yi = f (xi) for all i ∈ [m].
Many learning problems can be formulated within this
deterministic scenario.

In the deterministic case, by definition, there exists a target
function f with no generalization error: R(h) = 0.

In the stochastic case, there is a minimal non-zero error for any
hypothesis.

Model Selection

Definition (Bayes error)

Given a distribution D over X × Y , the Bayes error R∗ is defined
as the infimum of the errors achieved by measurable functions
h : X → Y :

R∗ = inf
h measurable

R(h)

A hypothesis h with R(h) = R∗ is called a Bayes hypothesis or
Bayes classifier.

By definition, in the deterministic case, we have R∗ = 0, but, in
the stochastic case, R∗ ̸= 0.

Model Selection

The Bayes classifier hBayes can be defined in terms of the
conditional probabilities as

hBayes(x) = argmax
y∈{0,1}

P(y |x)

The average error made by hBayes(x) on x ∈ X is thus
min{P(0|x),P(1|x)}, and this is the minimum possible error.
This quantity is called the noise associated with D and is precisely
the Bayes error.

Model Selection

Let H be a family of functions mapping X to {−1,+1}.
The excess error of a hypothesis h chosen from H, that is the
difference between its error R(h) and the Bayes error R∗, can be
decomposed as follows

R(h)−R∗ =

(
R(h)− inf

h∈H
R(h)

)
+

(
inf
h∈H

R(h)−R∗
)

▶ The first term is the estimation error: It depends on the
hypothesis h selected and measures the error of h with respect
to the infimum of the errors achieved by hypotheses in H.

▶ The second term is the approximation error: It measures
how well the Bayes error can be approximated using H. It is a
property of the hypothesis set H - a measure of its richness.

Model Selection
Model selection consists of choosing the hypothesis space H with
a favorable trade-off between approximation and estimation errors.

Note: The approximation error is not accessible, since in general
the underlying distribution D needed to determine R∗ is not
known.

In contrast, the estimation error of an algorithm A, that is, the
estimation error of the hypothesis hS returned after training on a
sample S , can sometimes be bounded using generalization bounds.

Figure: Estimation error (in green) and approximation error (in orange).
Here, we assume that there exists a best-in-class hypothesis h∗ ∈ H such
that R(h∗) = infh∈H R(h)

Empirical risk minimization (ERM)

A standard algorithm for which the estimation error can be
bounded is Empirical Risk Minimization (ERM).

ERM seeks to minimize the error on the training sample:

hERMS = argmin
h∈H

R̂S(h)

Proposition

For any sample S ,

P

(
R(hERMS)− inf

h∈H
R(h) > ϵ

)
≤ P

(
sup
h∈H

|R(h)− R̂S(h)| >
ϵ

2

)

Empirical risk minimization (ERM)

Proof. By the definition of infimum, for any ϵ > 0 there exists
hϵ ∈ H such that R(hϵ) < infh∈H R(h) + ϵ, thus

R̂S(h
ERM
S) ≤ R̂S(hϵ). It follows that

R(hERMS)− inf
h∈H

R(h) = R(hERMS)−R(hϵ) +R(hϵ)− inf
h∈H

R(h)

≤ R(hERMS)−R(hϵ) + ϵ

= R(hERMS)− R̂S(h
ERM
S) + R̂S(h

ERM
S)−R(hϵ) + ϵ

≤ R(hERMS)− R̂S(h
ERM
S) + R̂S(hϵ)−R(hϵ) + ϵ

≤ 2 sup
h∈H

|R(h)− R̂S(h)|+ ϵ

Since this holds for any ϵ > 0, it follows that

R(hERMS)− inf
h∈H

R(h) ≤ 2 sup
h∈H

|R(h)− R̂S(h)|

Empirical risk minimization (ERM)
The right-hand side in the Proposition can be upper-bounded using
the generalization bounds in terms of the Rademacher complexity,
the growth function, or the VC-dimension.
For instance, we have

P

(
R(hERMS)− inf

h∈H
R(h) > ϵ

)
≤ 2e−2m(ϵ−Rm(H))2

When H admits a favorable Rademacher complexity, e.g., finite VC

dimension (in which case Rm(H) = O(
√

d
m), for a sufficiently

large sample, with high probability, the estimation error is
guaranteed to be small.

Nevertheless, the performance of ERM is typically very poor.

1. The ERM approach disregards the complexity of H: either H
is not complex enough, in which case the approximation error
can be very large, or H is very rich, in which case the bound
on the estimation error becomes very loose.

2. In many cases, determining the ERM solution is
computationally intractable.

Structural risk minimization (SRM)

The hypothesis set H may be too rich for generalization bounds to
hold.

To circumvent this problem, we can decompose H as a union of
increasingly complex hypothesis sets:

H =
⋃
γ∈Γ

Hγ

with the complexity of Hγ increasing with γ ∈ Γ.

Structural risk minimization (SRM)

The task is to find γ∗ and Hγ∗ with the most favorable trade-off
between estimation and approximation errors.

Structural risk minimization (SRM)
Structural Risk Minimization (SRM) method:

1. H is assumed to be decomposable into a countable set
H =

⋃
k∈NHk

2. Hk ⊂ Hk+1, k ∈ N.
SRC seeks to determine the index k∗ ∈ N and the ERM hypothesis
h ∈ Hk∗ that minimize an upper bound on the excess error
R(h)−R∗.

Structural risk minimization (SRM)

As we show below, the SRM solution hSRMS is given by

hSRMS = argmin
h∈Hk ,k∈N

Fk(h) = argmin
h∈Hk ,k∈N

(
R̂S(h) +Rm(Hk) +

√
log k

m

)

SRM identifies an optimal index k∗ and therefore an hypothesis set
Hk∗ , and returns the ERM solution based on that hypothesis set.

For any h ∈ H, we denotes by Hk(h) the least complex hypothesis
set among the Hk that contain h.

Structural risk minimization (SRM)

Here is the precise statement ensuring

Theorem (SRM Learning guarantee)

For any δ > 0, with probability at least 1− δ over the draw of an
i.i.d. sample S of size m from Dm, the generalization error of the
hypothesis hSRMS returned by the SRM method is bounded by

R(hSRMS) ≤ inf
h∈H

(
R(h) + 2Rm(Hk(h)) +

√
log k(h)

m

)
+

√
2 log 3

δ

m

Structural risk minimization (SRM)
Proof.

P

(
sup
h∈H

R(h)− Fk(h)(h)) > ϵ

)
= P

(
sup

h∈Hk ,k∈N
R(h)− Fk(h) > ϵ

)

≤
∞∑
k=1

P

(
sup
h∈Hk

R(h)− Fk(h) > ϵ

)

=
∞∑
k=1

P

(
sup
h∈Hk

R(h)− R̂S(h)−Rm(Hk) > ϵ+
√

log k
m

)

≤
∞∑
k=1

exp

(
−2m(ϵ+

√
log k
m)2

)

≤
∞∑
k=1

e−2mϵ2e−2 log k

≤ e−2mϵ2
∞∑
k=1

1

k2
≤ 2e−2mϵ2

Structural risk minimization (SRM)
We observe that, for any two random variables X1, X2 with
X1 + X2 > ϵ, then either X1 >

ϵ
2 or X2 >

ϵ
2 . Thus

P(X1 + X2 > ϵ) ≤ P(X1 >
ϵ
2) + P(X2 >

ϵ
2). Using this

observation, the inequality derived above and the inequality
Fk(hSRMS)(h

SRM
S) ≤ Fk(h)(h), we have

P

(
R(hSRMS)−R(h)− 2Rm(Hk(h))−

√
log k(h)

m > ϵ

)
≤ P

(
R(hSRMS)− Fk(k(h) >

ϵ

2

)
+ P

(
Fk(h)(h)−R(h)− 2Rm(Hk(h))−

√
log k(h)

m > ϵ
2

)
≤ 2e−

mϵ2

2 + P

(
Fk(h)(h)−R(h)− 2Rm(Hk(h))−

√
log k(h)

m > ϵ
2

)
= 2e−

mϵ2

2 + P
(
R̂S(h)−R(h)−Rm(Hk(h)) >

ϵ
2

)
= 2e−

mϵ2

2 + e−
mϵ2

2 = 3e−
mϵ2

2 .

The proof is completed by setting the RHS to be equal to δ.

Structural risk minimization (SRM)

Implications of the SRM Learning guarantee Theorem.

For simplicity, let us assume that there exists h∗ such that
R(h∗) = infh∈H R(h).
Then the theorem implies that, with probability at least 1− δ, for
all h ∈ H

R(hSRMS) ≤ R(h∗) + 2Rm(Hk(h)) +

√
log k(h∗)

m
+

√
2 log 3

δ

m

The guarantee for SRM is as favorable as the one we would have
obtained, had an oracle informed us of the index k(h∗) of the
best-in-class classifier’s hypothesis set.

When H is rich enough that R(h∗) is close to the Bayes error, the
learning bound of the theorem is approximately a bound on the
excess error of the SRM solution.

Structural risk minimization (SRM)

SRM has drawbacks.

The decomposability of H into countably many hypothesis sets,
each with a converging Rademacher complexity, is a strong
assumption.
As an example, the family of all measurable functions cannot be
written as a union of countably many hypothesis sets with finite
VC-dimension.
Thus, the choice of H or that of the hypothesis sets Hk is a key
component of SRM.

SRM is typically computationally intractable: for most hypothesis
sets, finding the solution of ERM is NP-hard and in general SRM
requires determining that solution for a large number of indices k.

Cross-validation

An alternative method for model selection is cross-validation.

Cross-validation (CV) consists of using some fraction of the
training sample as a validation set to select a hypothesis set Hk .

This is in contrast with SRM which relies on a theoretical learning
bound assigning a penalty to each hypothesis set.

The CV algorithm is organized as follows.

• Let S ∈ X × Y be an i.i.d. labeled sample of size m.
We divide

S = S1 ∪ S2

where

S1 of size (1− α)m is reserved for training;

S2 of size αm is reserved for validation.

Here α ∈ (0, 1) typically chosen to be relatively small.

Cross-validation

• Let (Hk) be a countable sequence of hypothesis sets with
increasing complexities.

• For any k ∈ N, let hERMS1,k
denote the solution of ERM run on S1

using the hypothesis set Hk .

• The hypothesis hCVS returned by cross-validation is the ERM
solution hERMS1,k

with the best performance on S2

hCVS = argmin
h∈{hERMS1,k

,k∈N}
R̂S2(h)

Proposition

For any α > 0 and any sample size m ≥ 1,

P

(
sup
k∈N

|R(hERMS1,k)− R̂S2(h
ERM
S1,k)| > ϵ+

√
log k
αm

)
≤ 4 e−2αmϵ2

Cross-validation
Proof.

P

(
sup
k∈N

|R(hERMS1,k)− R̂S2(h
ERM
S1,k)| > ϵ+

√
log k
αm

)
≤

∞∑
k=1

P

(
|R(hERMS1,k)− R̂S2(h

ERM
S1,k)| > ϵ+

√
log k
αm

)

=
∞∑
k=1

E

(
P

(
|R(hERMS1,k)− R̂S2(h

ERM
S1,k)| > ϵ+

√
log k
αm

∣∣∣∣S1))
Since he hypothesis hERMS1,k

is fixed conditioned on S1 and the
sample S2 is independent from S1, by Hoeffding’s inequality,

P

(
|R(hERMS1,k)− R̂S2(h

ERM
S1,k)| > ϵ+

√
log k
αm

∣∣∣∣S1) ≤ 2 e
−2αm(ϵ+

√
log k
αm)2

≤ 2 e−2αmϵ2−2 log k

≤ 2
k2 e

−2αmϵ2

Cross-validation

From above:

P

(
|R(hERMS1,k)− R̂S2(h

ERM
S1,k)| > ϵ+

√
log k
αm

∣∣∣∣S1) ≤ 2
k2 e

−2αmϵ2

Using this inequality in the above bound and summing over k ∈ N:

P

(
sup
k∈N

|R(hERMS1,k)− R̂S2(h
ERM
S1,k)| > ϵ+

√
log k
αm

)
≤

∞∑
k=1

2
k2 e

−2αmϵ2

≤ 4 e−2αmϵ2 .

Cross-validation

Let R(hSRMS1,k
) be the generalization error of the SRM solution using

a sample S1 of size (1− α)m and R(hCVS) the generalization error
of the cross-validation solution using a sample S of size m.

Then, using the above proposition, we derive the following learning
guarantee which compares the error of CV vs SRM methods.

Theorem - CV versus SRM

For any δ > 0, with probability at least 1− δ over the draw of an
i.i.d. sample S of size m from Dm,

R(hCVS)−R(hSRMS1) ≤ 2

√
logmax(k(hCVS), k(hSRMS1

))

αm
+ 2

√
log 4

δ

2αm

where, for any h, k(h) denotes the smallest index of a hypothesis
set containing h.

Cross-validation

Proof. Using the above proposition, the Theorem for SRM
Learning guarantee and the property that hCVS is a minimizer,
δ > 0, with probability at least 1− δ, we have

R(hCVS) ≤ R̂S2(h
CV
S) +

√
log k(hCVS)

αm
+

√
log 4

δ

2αm

≤ R̂S2(h
SRM
S1) +

√
log k(hCVS)

αm
+

√
log 4

δ

2αm

≤ R(hSRMS1) +

√
log k(hCVS)

αm
+

√
log k(hSRMS1

)

αm
+ 2

√
log 4

δ

2αm

≤ R(hSRMS1) + 2

√
logmax(k(hCVS), k(hSRMS1

))

αm
+ 2

√
log 4

δ

2αm

Cross-validation

Interpretation:

The learning guarantee shows that, with high probability, the
generalization error of the CV solution for a sample of size m is
close to that of the SRM solution for a sample of size (1− α)m.

For α relatively small, this suggests a guarantee similar to that of
SRM, which, as previously discussed, is very favorable.

However, in some unfavorable regimes, an SRM algorithm trained
on (1− α)m points may have a significantly worse performance
than when trained on m points

Thus, the bound suggests in fact a trade-off: α should be chosen
sufficiently small to avoid the unfavorable regimes just mentioned
and yet sufficiently large for the right-hand side of the bound to be
small and thus informative.

Cross-validation

n-fold cross-validation is a method used in practice to correct
issues arising when m is small.

The method consists of first randomly partitioning a given sample
S of m labeled examples into n subsamples, or folds.
Then, for any i ∈ [n], the learning algorithm is trained on all but
the i-th fold to generate a hypothesis hi , and the performance of
hi is tested on the i-th fold.

The parameter value of the algorithm is evaluated based on the
average error of the hypotheses hi , which is called the
cross-validation error.

The special case of n-fold cross-validation where n = m is called
leave-one-out cross-validation, since at each iteration exactly
one instance is left out of the training sample.

Regularization

Another broad family of algorithms used to control the
generalization error is that of regularization-based algorithms.

This approach is inspired by the SRM method where the
hypothesis space H is decomposed as a union of increasingly
complex hypothesis sets:

H =
⋃
γ∈Γ

Hγ

with the complexity of Hγ increasing with γ ∈ Γ.

Regularization

We consider a very complex space of hypotheses H that is
represented as an uncountable union of nested hypothesis sets

H =
⋃
γ

Hγ

H is often chosen to be dense in the space of continuous functions
over X .
For instance, H may be chosen to be the set of all linear functions
in some high-dimensional space and

Hγ = {x 7→ w · Φ(x) : ∥w∥ ≤ γ}

Given a labeled sample S ⊂ X × Y , the extension of the SRM
method to an uncountable union leads to a regularized solution.

Regularization

Recall that the SRM solution hSRMS is associated with the
optimization problem

hSRMS = argmin
h∈Hk ,k∈N

(
R̂S(h) +Rm(Hk) +

√
log k
m

)
To deal with an uncountable union, we are led to consider

argmin
h∈Hγ ,γ>0

(
R̂S(h) +Rm(Hγ) +

√
log γ
m

)
where another penalty terms p(γ,m) can be chosen in place of

p(γ,m) = Rm(Hγ) +
√

log γ
m leading to

argmin
h∈Hγ ,γ>0

(
R̂S(h) + p(γ,m)

)

Regularization

Under some conditions, there exists a function r : H → R such
that, for any γ > 0, the constrained optimization problem

argmin
h∈Hγ ,γ>0

R̂S(h) + p(γ,m)

can be written as the unconstrained optimization problem

argmin
h∈H

R̂S(h) + λr(h),

for some λ > 0.

r(h) is called a regularization term and the regularization
parameter λ is treated as a hyperparameter since its optimal value
is typically not known.

Larger values of λ further penalize more complex hypotheses,
while, for λ close or equal to zero, the regularization term has no
effect and the algorithm coincides with ERM.

Regularization

For most algorithms, the regularization term r(h) is chosen to be
an increasing function of ∥h∥ for some choice of the norm ∥∥,
when H is the subset of a Hilbert space.

When the regularization term is chosen to be ∥h∥p for some choice
of p ≥ 1, then it is a convex function of h, since any norm is
convex.

However, for the zero-one loss, the first term of the objective
function is non-convex, thereby making the optimization problem
computationally hard.

In practice, most regularization-based algorithms instead use a
convex upper bound on the zero-one loss and replace the empirical
zero-one term with the empirical value of that convex surrogate.
The resulting optimization problem is then convex and therefore
admits more efficient solutions than SRM.

Regularization

• Regularization provides a unified view on many machine learning
methods.

By plugging in different regularizers and (surrogate) loss functions,
we obtain different machine learning models.

For instance, in the standard SVM formulation, training means to
learn the model parameter vector w by solving the optimization
problem

min
w

L(w) = min
w

1

m

m∑
i=1

L(yi , hw (xi)) + λ∥w∥22

where L(yi , hw (xi)) = max[1− yiw
t(xi + b), 0] is the hinge loss.

SVM uses the hinge loss as error measure and the ℓ2-regularizer to
penalize complex solutions.

Decision Theoretic Generalizations of the PAC Model
Limitations of the classical PAC learning model
▶ The model is usually defined for binary functions. It is useful

in practice to consider more general functions.
▶ The assumption that the examples are generated from an

underlying target function is too restrictive in some
applications where one would like a more general regression
model in which the y component in a training example
(x , y) ∈ X ×Y follows a conditional distribution on Y given x
Here the goal is to approximate this conditional distribution.

▶ Many learning problems are unsupervised and the learner has
access only to randomly drawn unlabeled examples from an
instance space X . Here learning can be viewed as some form
of approximation of the distribution that is generating these
examples. This is called density estimation when the
instance space X is continuous and no specific parametric
form for the underlying distribution on X is assumed; it is
called parameter estimation when specific parametric
probability models are used.

Decision Theoretic Generalizations of the PAC Model

To extend the PAC model, one can apply a more general
framework based on statistical decision theory.

In this general framework we assume the learner receives randomly
drawn training examples each example consisting of an instance
x ∈ X and and outcome y ∈ Y where X and Y are arbitrary sets
called instance and outcome spaces respectively. These examples
are generated according to an unknown joint distribution on
X × Y .

After training, the learner will receive further random examples
drawn from this same joint distribution. For each example (x , y)
the learner will be shown only the instance x . Then he will be
asked to choose an action a from a set of possible actions A called
the decision space.

Decision Theoretic Generalizations of the PAC Model

Following the action by the learner, the outcome y will be revealed
to the learner.

In the case that we examine here the outcome y depends only on
the instance x and not on the action a chosen by the learner.
For each action a and outcome y , the learner will suffer a loss
which is measured by a fixed real-valued loss function L on Y × A.
We assume that the loss function is known to the learner. The
learner tries to choose his actions so as to minimize his loss.

Based on the training examples, the learner develops a
deterministic strategy that specifies what he believes is the
appropriate action a for each instance x ∈ X . The learner then
uses this strategy on all future examples. Thus we look at batch
learning rather than incremental or on-line learning.

Decision Theoretic Generalizations of the PAC Model

The learner’s strategy, which is a function from the instance space
X into the decision space A is called a decision rule.

We assume that the decision rule is chosen from a fixed decision
rule space H of functions from X into A.
For example, instances in X may be encoded as inputs to a neural
network and outputs of the network may be interpreted as actions
in A.
In this case, the network represents a decision rule and the decision
rule space H may be all functions represented by networks obtained
by varying the parameters of a fixed underlying network.

The goal of learning is to find a decision rule in H that minimizes
the expected loss when examples are drawn at random from the
unknown joint distribution on X × Y

Decision Theoretic Generalizations of the PAC Model

Example
We consider the problem of learning to maximize profit (or to
minimize loss) at the horse races.

Here an instance x ∈ X is a race, an action a ∈ A consists of
placing or not placing a certain bet and an outcome y ∈ Y is
determined by the winner and the second and third place finishers.

The loss L(y , a) is the amount of money lost when bet a is placed
and the outcome of the race is y . A negative loss is interpreted as
gain

The joint distribution on X × Y represents the probability of
various races and outcomes and is unknown to the learner.
We only have random example (x1, y1), . . . , (xn, yn) each consisting
of a race outcome pair generated from this distribution.

Decision Theoretic Generalizations of the PAC Model

From these examples, the learner develops a deterministic betting
strategy decision rule.

The best decision rule h is one that specifies a bet a for each race x
that minimizes the expectation of the loss L(x , a) when y is chosen
randomly from the unknown conditional distribution on Y given x
which is determined by the underlying joint distribution on X × Y .

This is (not necessarily unique) best decision rule minimizes the
expected loss on a random example (x , y). This is known as the
Bayes optimal decision rule.

The learner tries to approximate Bayes optimal decision rule as
best he can using decision rules from a given decision rule space H
Decision rules that can be represented by a particular kind of
neural network.

Decision Theoretic Generalizations of the PAC Model

Other examples include: classification, regression, density and
parameter estimations, which are associated with different types of
loss functions.

There are three major practical issues in this decision theoretic
view of learning.

▶ The first is the number of random examples needed in order
to be able to produce a good decision rule in the decisiojn rule
space H.

▶ The second is the adequacy of the decision rule space H

▶ The third practical problem is the computational complexity
of the method we use to produce our decision rule from the
training examples.

Cf. Overview of the Probably Approximately Correct PAC Learning
Framework, by David Haussler

	Statistical Learning Theory
	Machine Learning - Basic Definitions
	The PAC Learning Framework
	Rademacher Complexity
	Model selection
	Decision Theoretic Generalizations of the PAC Model

