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Support Vector Machines



Support Vector Machines

Support Vector Machines (SVMs) are one of the most theoretically
well motivated and most effective classification algorithms in
modern machine learning [Boser, Guyon, Vapnik, 1992]

Given a set of labeled training data, each marked as belonging to
either one of two categories, an SVM algorithm computes an
optimal hyperplane that separates the two categories.

The optimal criterion for the hyperplane consists in determining
the hyperplane achieving the widest possible gap between the
two categories.

In addition to performing linear classification, SVMs can also
perform a non-linear classification using what is called the kernel
trick - a method that implicitly maps input data into an
appropriate feature space where feature vectors are linearly
separable.



Linear classification

Let X ⊂ RN , Y = {−1,+1} and f : X → Y be a target function.

Given a hypothesis set H of functions mapping X to Y , the binary
classification task is formulated as follows.

The learner receives a training sample S of size m drawn i.i.d.
from X according to some unknown distribution D

S = ((x1, y1), . . . , (xm, ym)) ∈ X × Y

with yi = f (xi ) for all i ∈ [m].

The problem consists of determining a hypothesis h ∈ H, a binary
classifier, with small generalization error:

RD(h) = P
x∼D

(h(x) ̸= f (x))



Linear classification

Different hypothesis sets H can be selected for this binary
classification task.

In view of the discussion of the model selection problem presented
above, hypothesis sets with smaller complexity (e.g., smaller
VC-dimension or Rademacher complexity) provide better learning
guarantees, everything else being equal.

A natural hypothesis set with relatively small complexity is that of
linear classifiers, or hyperplanes, which can be defined as follows:

H = {x → sign(w · x + b) : w ∈ RN , b ∈ R}

The learning problem is then referred to as a linear classification
problem.



Linear classification

The general equation of an hyperplane in RN is

HPw ,b = {x ∈ RN : w · x + b = 0},

where w ∈ RN and b ∈ R.
The vector w

∥w∥ can be identified with the unit normal vector to
the hyperplane and b with the offset or distance of the hyperplane
from the origin.

Accordingly, we can define a decision function sign(w · x + b) that
takes values in the set {−1,+1} depending on x falling on either
side of the hyperplane HPw ,b.



Linear classification

We start by assuming that the training sample S can be linearly
separated, that is, we assume the existence of a hyperplane that
perfectly separates the training sample into two populations of
positively and negatively labeled points.

Definition. Let S = {(xi , yi ) ⊂ X × Y : i = 1, . . . ,m}. The set S
is said to be linearly separable if there exist w ∈ RN \ {0} and
b ∈ R such that

yi (w · xi + b) > δ ∀i = 1, . . .N,

for some δ > 0. In this case, HPw ,b is said to be a separating
hyperplane.

If S is separable, there are infinitely many separating hyperplanes.

Which hyperplane should a learning algorithm select?



Linear SVM

Among all possible separating hyperplanes, the SVM approach
seeks to find the one with the maximum margin of separation
between any (training) point and the hyperplane.

Definition. The optimal separating hyperplane for a set
S = {(xi , yi ) ⊂ RN × {−1,+1} : i = 1, . . . ,m} is the solution of:

max
w∈RN ,b∈R

{min ∥xi − x∥ : x ∈ RN ,w · x + b = 0, i = 1, . . . ,m}



Linear SVM
The geometric margin ρ of a linear classifier for a sample
S = (x1, . . . , xm) is the minimum distance d(xi ,HPw ,b) over the
points in the sample,

ρ = min
i∈[m]

d(xi ,HPw ,b),

that is, the distance of the hyperplane to the closest sample
point(s).

The SVM solution is the separating hyperplane with the maximum
geometric margin and is thus known as the maximum-margin
hyperplane.



Linear SVM

It is easy to see that any hyperplane HPw ,b can be rescaled by
multiplying w and b by the same non-zero constant λ so that

HPw ,b = HPλw ,λb

We can remove this unnecessary degree of freedom by rescaling w
and b so that the point(s) closest to the hyperplane satisfy
|w · xi + b| = 1.

Definition. The hyperplane HPw ,b is said to be in canonical form
with respect to X = {xi ∈ H : i = 1, . . . ,m} if

min
i=1,...m

|w · xi + b| = 1

If HPw ,b is a canonical hyperplane, then a vector in xi ∈ X is said
to be a support vector if it belongs to either one of the
hyperplanes HP−1 or HP1, where HPk := {x ∈ H : w · x +b = k}.



Linear SVM
If x ∈ HP−1 and x ′ ∈ HP1 (i.e., x , x ′ are support vectors) then

2 = |(w · x + b)− (w · x ′ + b)|
= |w · x − w · x ′|
= |w · (x − x ′)| =⇒ | w

∥w∥ · (x − x ′)| = 2
∥w∥ .

Hence, the distance between HP−1 and HP1 is 2
∥w∥ and the

distance between HPw ,b and a support vector is 1
∥w∥ .



Linear SVM

Alternatively, using the distance formula from a point to a plane,
one can derive that

d(x ,Hw ,b) =
|w · x + b|

∥w∥

Thus, for a support vector, this distance is 1
∥w∥ .



Linear SVM - Primal optimization problem

We can set up an optimization problem that defines the SVM
solution. As above, we assume that S is separable.

The maximum margin of a separating hyperplane is given by

ρ = max
w ,b:yi (w ·xi+b)≥0

min
i∈[m]

|w · xi + b|
∥w∥

= max
w ,b

min
i∈[m]

yi (w · xi + b)

∥w∥

As observed above, we can rescale the hyperplanes, so that it is
sufficient to consider the pairs (w , b) such that
mini∈[m] yi (w · xi + b) = 1. Thus we have

ρ = max
(w ,b):mini∈[m] yi (w ·xi+b)=1

1

∥w∥

= max
(w ,b): yi (w ·xi+b)≥1, i∈[m]

1

∥w∥



Linear SVM - Primal optimization problem
Maximizing 1

∥w∥ is equivalent to minimizing 1
2∥w∥2.

Thus, the pair (w , b) returned by SVM in the separable case is the
solution of the following convex optimization problem:

min
(w ,b)∈RN×R

τ(w) =
1

2
∥w∥2

subject to: yi (w · xi + b) ≥ 1, ∀i = 1, . . . ,m.

Remark. The objective function τ is strictly convex. In fact τ is
infinitely differentiable and the eigenvalues of the Hessian
∇2τ(w) = I are strictly positive. Also, the constraints are all
defined by affine functions.
It follows that the optimization problem admits a unique solution.

Moreover, since the objective function is quadratic and the
constraints are affine, this optimization problem is a specific
instance of quadratic programming, a family of problems
extensively studied in optimization that have efficient numerical
solutions.



Linear SVM - KKT conditions

We can reformulate the optimization problem using the method of
Lagrange multipliers.

We introduce non-negative constants α1, . . . , αm and denote
α = (α1, . . . , αm)

t .
For w ∈ RN , b ∈ R, we define the Lagrangian

L(w , b, α) :=
1

2
∥w∥2 −

m∑
i=1

αi (yi (w · xi + b)− 1).

Then the primal optimization problem can be solved as

min
w∈RN ,b∈R

L(w , b, α)

subject to αi ≥ 0, for all i = 1, . . .m.



Linear SVM - KKT conditions
The Karush-Kuhn-Tucker (KKT) conditions for the solution of the
optimization problem are obtained by setting the gradient of the
Lagrangian with respect to the primal variables w and b to zero
and by writing the complementarity conditions:

∂L
∂b

= −
m∑
i=1

αiyi = 0 =⇒
m∑
i

αiyi = 0,

∂L
∂w

= w −
m∑
i=1

αiyixi = 0 =⇒ w =
m∑
i=1

αiyixi

αi (yi (w · xi + b)− 1) = 0,∀i =⇒ αi = 0 ∨ yi (w · xi + b) = 1

Remark. Eq. w =
∑m

i=1 αiyixi shows that the solution w is a
linear combination of the support vectors, that is, those training
vectors xi for which αi > 0.
By the complementarity condition, if αi ̸= 0, then
yi (w · xi + b) = 1. Thus the support vectors lie on the marginal
hyperplanes w · x + b = ±1.



Linear SVM - KKT conditions

Support vectors fully define the maximum-margin hyperplane or
SVM solution.

This explains the name of the SVM algorithm.

Vectors not lying on the marginal hyperplanes do not affect the
definition of these hyperplanes and, in their absence, the solution
to the SVM problem remains unchanged.

Note that while the solution w of the SVM problem is unique, the
support vectors are not.

In dimension N, N + 1 points are sufficient to define a hyperplane.
When more than N + 1 points lie on a marginal hyperplane,
different choices are possible for the N + 1 support vectors.



Linear SVM - Dual optimization problem

We derive the dual form of the constrained optimization problem
stated above by plugging into the Lagrangian the definition of w in
terms of the dual variables.

This yields

L =
1

2
∥

m∑
i=1

αiyixi∥2 −
m∑

i ,j=1

αiαjyiyj(xi · xj)−
m∑

i ,j=1

αiαjb +
m∑
i=1

αi .

which simplifies to

L =
m∑
i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyj(xi · xj)



Linear SVM - Dual optimization problem
By applying the constraint, we obtain the dual optimization
problem for SVMs (valid in the separable case)

max
α1,...,αm

L(α) =
m∑
i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyj(xi · xj)

subject to
m∑
i=1

αiyi = 0 and αi ≥ 0, for all i = 1, . . . ,m.

Remark. The objective function L(α) is convex. In fact L is
infinitely differentiable and the Hessian ∇2L(α) = −A, where
A = (yixi · yjxj)i ,j is positive semidefinite. Also, the constraints are
affine and convex.
Since L(α) is a quadratic function of α, this dual optimization
problem is also a quadratic programming problem, as in the case of
the primal optimization and once again both general-purpose and
specialized quadratic programming solvers can be used to obtain
the solution.



Linear SVM - Dual optimization problem

Since the constraints are affine, strong duality holds.
Thus, the primal and dual problems are equivalent: the solution α
of the dual problem can be used directly to determine the
hypothesis returned by SVMs:

h(x) = sign(w · x + b) = sign

(
m∑
i=1

αiyi (xi · x) + b

)

Since support vectors lie on the marginal hyperplanes, for any
support vector xi , w · xi + b = yi , and thus b can be obtained via

b = yi −
m∑
j=1

αjyj(xj · xi )



Linear SVM - Dual optimization problem

Multiplying both sides by αiyi and taking the sum leads to

m∑
i=1

αiyib =
m∑
i=1

αiy
2
i −

m∑
i ,j=1

αiαjyiyj(xj · xi )

Since y2i = 1, w =
∑m

i=1 αiyixi and
∑m

i=1 αiyi = 0, we have

0 =
m∑
i=1

αi − ∥w∥2

This implies that the margin can be expressed as

ρ2 =
1

∥w∥2
=

1∑m
i=1 αi

=
1

∥α∥1



Linear SVM - Dual optimization problem
Remark. The dual optimization problem

max
α1,...,αm

L(α) =
m∑
i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyj(xi · xj)

subject to
m∑
i=1

αiyi = 0 and αi ≥ 0, for all i = 1, . . . ,m.

and the related expressions

h(x) = sign

(
m∑
i=1

αiyi (xi · x) + b

)

b = yi −
m∑
j=1

αjyj(xj · xi )

reveal a very important property of SVMs: the hypothesis solution
depends only on inner products between vectors and not directly
on the vectors themselves.



Linear SVM - Learning guarantee

We can derive a learning guarantee for SVMs based on the fraction
of support vectors in the training set.

Definition. Let hS denote the hypothesis returned by a learning
algorithm A, when trained on a fixed sample S . Then, the
leave-one-out error of A on a sample S of size m is defined by

R̂LOO(A) =
1

m

m∑
i=1

1hS−{xi}(xi ) ̸=yi

That is, for each i ∈ [m], A is trained on all the points in S except
for xi , i.e., S − {xi} and its error is then computed using xi . The
leave-one-out error is the average of these errors.



Linear SVM - Learning guarantee
Proposition. The average leave-one-out error for samples of size
m ≥ 1 is an unbiased estimate of the average generalization error
for samples of size m − 1:

E
S∼Dm

[R̂LOO(A)] = E
S′∼Dm−1

[R(hS ′)]

where D is the distribution according to which points are drawn.
Proof. Since the points of S are drawn in an i.i.d. fashion,

E
S∼Dm

[R̂LOO(A)] =
1

m

m∑
i=1

E
S∼Dm

[1hS−{xi}(xi )̸=yi ]

= E
S∼Dm

[1hS−{x1}(x1 )̸=y1 ]

= E
S′∼Dm−1,x1∼D

[1hS′ (x1) ̸=y1 ]

= E
S′∼Dm−1

[ E
x1∼D

[1hS′ (x1 )̸=y1 ]]

= E
S′∼Dm−1

[R(hS ′)]



Linear SVM - Learning guarantee

Theorem. Let hS be the hypothesis returned by SVMs for a
sample S and NSV (S) be the number of support vectors that
defines hS . Then

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

[NSV (S)
m+1 ]

Proof. Let S be a linearly separable sample of m + 1.
If x is not a support vector for hS , removing it does not change the
SVM solution.
Thus, hS−{x} = hS and hS−{x} correctly classifies x.
By contraposition, if hS−{x} misclassifies x , x must be a support
vector, which implies

R̂LOO(A) ≤ NSV (S)
m+1

The proof is completed by taking the expectation of both sides and
applying the Proposition above.



Linear SVM - Learning guarantee

Remark. The theorem shows that the average error of the SVM
algorithm is upper bounded by the average fraction of support
vectors.

One may hope that for many distributions seen in practice, a
relatively small number of training points will lie on the marginal
hyperplanes. The solution will then be sparse in the sense that a
small fraction of the dual variables αi will be non-zero.

However, this bound is relatively weak since it applies only to the
average generalization error of the algorithm over all samples of
size m.
It provides no information about the variance of the generalization
error.

A stronger result about the margin theory will be proved below.



Linear SVM - Non-separable case

In most practical settings, the training data is not linearly
separable, which implies that for any hyperplane w · x + b = 0,
there exists xi ∈ S such that

yi (w · xi + b) ≱ 1

The constraints imposed in the linearly separable case cannot all
hold simultaneously.
However, we can impose a relaxed version of these constraints,
that is, for each i ∈ [m], there exist ξi ≥ 0 such that

yi (w · xi + b) ≥ 1− ξi

The variables ξi are known as slack variables and they measure
the distance by which the vector xi violate the desired inequality
yi (w · xi + b) ≥ 1



Linear SVM - Non-separable case

For a hyperplane w · x + b = 0, a vector xi with ξi > 0 can be
viewed as an outlier.
Each xi must be positioned on the correct side of the appropriate
marginal hyperplane to not be considered an outlier. As a
consequence, a vector xi with yi (w · xi + b) < 1 is correctly
classified by the hyperplane w · x + b = 0 but is nonetheless
considered to be an outlier, that is ξi > 0.



Linear SVM - Non-separable case

If we omit the outliers, the training data is correctly separated by
w · x + b = 0 with a margin ρ = 1

∥w∥2 that we refer to as the soft

margin, as opposed to the hard margin in the separable case.

How should we select the hyperplane in the non-separable case?

There are two conflicting objectives:

1. on one hand, we wish to limit the total amount of slack due
to outliers, which can be measured by

∑m
i=1 ξi or, more

generally, by
∑m

i=1 ξ
p
i , for some p ≥ 1;

2. on the other hand, we seek a hyperplane with a large margin,
though a larger margin can lead to more outliers and thus
larger amounts of slack.



Linear SVM - Non-separable case

The following general optimization problem defining SVMs in the
non-separable case where the parameter C ≥ 0 determines the
trade-off between margin-maximization (or minimization of ∥w∥2)
and the minimization of the slack penalty.

min
w ,b,ξ

τ(w) =
1

2
∥w∥2 + C

m∑
i=1

ξpi

subject to: yi (w · xi + b) ≥ 1− ξi ∧ ξi ≥ 0, ∀i = 1, . . . ,m.

where ξ = (ξ1, . . . , ξm)
t and the parameter C is determined via

n-fold cross-validation.

Remark. As in the separable case, this is a convex optimization
problem since the constraints are affine and thus convex and since
the objective function is convex for any p ≥ 1.



Linear SVM - Non-separable case

There are many possible choices for p in the slack penalty
∑m

i=1 ξ
p
i

leading to more or less aggressive penalizations of the slack terms.

The loss functions associated with p = 1 and p = 2 are called the
hinge loss and the quadratic hinge loss, respectively.

Figure: The hinge loss and the quadratic hinge loss provide convex upper
bounds on the binary zero-one loss.



Linear SVM - KKT conditions

As in the separable case, the objective function and the afine
constraints are convex and differentiable. We can reformulate the
optimization problem using Lagrange multipliers and apply the
KKT conditions.

Let α = (α1, . . . , αm)
t , β = (β1, · · · , βm)t , with αi , βi ≥ 0 for all

i ∈ [m]. For w ∈ RN , b ∈ R, ξ = (ξ1, . . . , ξm)
t ∈ Rm

+ we define the
Lagrangian

L(w , b, ξ, α, β) = 1
2∥w∥2+C

m∑
i=1

ξi−
m∑
i=1

αi (yi (w ·xi+b)−1+ξi )−
m∑
i=1

βiξi .

Then the primal optimization problem can be solved as

min
w∈RN ,b∈R,ξ∈∈Rm

+

L(w , b, α, β)

subject to αi , βi ≥ 0, for all i = 1, . . .m.



Linear SVM - KKT conditions

The KKT conditions for the solution of the optimization problem
are obtained by setting the gradient of the Lagrangian with respect
to the primal variables w , b and ξ to zero and by writing the
complementarity conditions:

∂L
∂b

= −
m∑
i=1

αiyi = 0 =⇒
m∑
i

αiyi = 0,

∂L
∂w

= w −
m∑
i=1

αiyixi = 0 =⇒ w =
m∑
i=1

αiyixi

∂L
∂ξi

= C − αi − βi = 0 =⇒ αi + βi = C

αi (yi (w · xi + b)− 1 + ξi ) = 0, ∀i =⇒ αi = 0 ∨ yi (w · xi + b) = 1− ξi

βiξi = 0,∀i =⇒ βi ∨ ξi = 0



Linear SVM - KKT conditions

Remark. As in the separable case, eq. w =
∑m

i=1 αiyixi shows
that the solution w is a linear combination of the support
vectors, that is, those training vectors xi for which αi > 0.

By the complementarity condition, there are two types of support
vectors.
If αi = 0, then yi (w · xi + b) = 1. Thus the support vectors lie on
the marginal hyperplanes w · x + b = ±1.
If αi ̸= 0, then yi (w · xi + b) = 1− ξi and xi is an outlier. In this
case, eq. βiξi = 0 implies βi = 0 and eq. αi + βi = C then
requires αi = C .

Thus, support vectors xi are either outliers, in which case αi = C ,
or vectors lying on the marginal hyperplanes.

As in the separable case, while the weight vector w solution is
unique, the support vectors are not.



Linear SVM - Dual optimization problem

We derive the dual form of the constrained optimization problem
stated above by plugging into the Lagrangian the definition of w in
terms of the dual variables.

This yields

L =
1

2
∥

m∑
i=1

αiyixi∥2 −
m∑

i ,j=1

αiαjyiyj(xi · xj)−
m∑

i ,j=1

αiαjb +
m∑
i=1

αi .

which - exactly as in the separable case - simplifies to

L =
m∑
i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyj(xi · xj)

However, here, in addition to αi ≥ 0, we must impose the
constraint on the Lagrange variables βi ≥ 0.
In view of αi + βi = C , this is equivalent to αi ≤ C .



Linear SVM - Dual optimization problem

Hence, by applying the constraint, we obtain the following dual
optimization problem for SVMs

max
α1,...,αm

m∑
i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyj(xi · xj)

subject to
m∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C , for all i = 1, . . . ,m.

which differs from the separable case for the constraints αi ≤ C .

Remark. As in the separable case, the objective function and the
constraints are convex. This dual optimization problem is also a
quadratic programming problem which is equivalent to the primal
problem.



Linear SVM - Dual optimization problem

As in the linear case, the solution of the dual problem can be used
directly to determine the hypothesis returned by SVMs and the
expression of b, yielding

h(x) = sign(w · x + b) = sign

(
m∑
i=1

αiyi (xi · x) + b

)

and

b = yi −
m∑
j=1

αjyj(xj · xi ),

which are valid for 0 ≤ αi ≤ C .

As in the separable case, the dual optimization problem and the
expressions above show that the hypothesis solution depends only
on inner products between vectors and not directly on the vectors
themselves.



Linear SVM - Margin theory

Recall that the VC-dimension of the family H of hyperplanes or
linear hypotheses in RN is N + 1.

Hence, the application of the of the VC-dimension bound to this
hypothesis gives that, for any δ > 0, with probability at least 1− δ,
the following holds for all h ∈ H

R(h) ≤ R̂S(h) +

√
2(N + 1) log m

(N+1)

m
+

√
log 1

δ

2m

When the dimension of the feature space N is large compared to
the sample size m, this bound is uninformative.

However, we will derive learning guarantees presented that are
independent of the dimension N and thus hold regardless of its
value.



Linear SVM - Margin theory

Definition. The confidence margin of a real-valued function h at
a point x labeled with y is the quantity y h(x).

Thus, when y h(x) > 0, h classifies x correctly but we interpret the
magnitude |h(x)| as the confidence of the prediction made by h.

The notion of confidence margin is distinct from that of geometric
margin and does not require a linear separability assumption.

The two notions are related in the separable case: For
h(x) = w · x + b with geometric margin ρgeom, the confidence
margin at any point x of the training sample with label y satisfies

|y h(x)| ≥ ρgeom∥w∥



Linear SVM - Margin theory
For any parameter ρ > 0, we define a ρ-margin loss function that
penalizes h with the cost of 1 when it misclassifies a point x but
also penalizes h (linearly) when it correctly classifies x with
confidence less than or equal to ρ.

Definition. For any ρ > 0, the ρ-margin loss function
Lρ : R× R → R+ is defined for all y , y ′ ∈ R by
Lρ(y , y

′) = Φρ(y y
′) with

Φρ(x) = min(1,max(0, 1− x
ρ )) =


1 if x ≤ 0

1− x
ρ if 0 < x ≤ ρ

0 if ρ ≤ x .

Figure: Margin loss function (in red) defined with ρ = 0.7



Linear SVM - Margin theory

We define the empirical margin loss as the margin loss over the
training sample.
Definition. Given a sample S = (x1, . . . , xm) and a hypothesis h,
the empirical margin loss is defined by

R̂S ,ρ(h) =
1

m

m∑
i=1

Φρ(yih(xi ))

Since Φρ(yih(xi )) ≤ 1yih(xi )≤ρ then the empirical margin loss
satisfies

R̂S ,ρ(h) ≤
1

m

m∑
i=1

1yih(xi )≤ρ

Interpretation: the empirical margin loss can be replaced by this
upper bound, which represents the fraction of the points in the
training sample S that have been misclassified or classified with
confidence less than ρ.



Linear SVM - Margin theory

In other words, the upper bound of the empirical margin loss is the
fraction of the points in the training data with margin less than ρ.

This corresponds to the loss function indicated by the blue dotted
line in the figure

Figure: Margin loss function (in red) defined with ρ = 0.7

The advantage of using a loss function based on Φρ as opposed to
the zero-one loss or the loss defined by the blue dotted line in the
figure is that Φρ is Lispchitz continuous.



Linear SVM - Margin theory

The lemma below bounds the empirical Rademacher complexity of
a hypothesis set H after composition with a Lipschitz function in
terms of the empirical Rademacher complexity of H.

Lemma (Talagrand’s lemma). Let Φ1, . . . ,Φm be λ-Lipschitz
functions from R to R and let σ1, . . . , σm be Rademacher random
variables. Then , for any hypothesis set H of real value function,

1

m
E
σ

[
sup
h∈H

m∑
i=1

σi (Φi ◦ h)(xi )

]
≤ λ

m
E
σ

[
sup
h∈H

m∑
i=1

σih(xi )

]
= λRS(H)

In particular, if Φ1 = Φ for all i ∈ [m], then the following holds:

RS(Φ ◦ H) ≤ λRS(H).

This lemma will be needed for the proof of the margin-based
generalization bound.
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We can now prove the following general margin-based
generalization bound.

Theorem (Margin bound for binary classification). Let H be a
set of real-valued functions and fix ρ > 0. then, for any δ > 0, with
probability at least 1− δ, each of the following holds for all h ∈ H:

R(h) ≤ R̂S ,ρ(h) +
2
ρ Rm(H) +

√
log 1

δ

2m

R(h) ≤ R̂S ,ρ(h) +
2
ρ Rm(H) + 3

√
log 2

δ

2m
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Remarks. The generalization bounds of the theorem suggest a
trade-off:

A larger value of ρ decreases the complexity term (second term),
but tends to increase the empirical margin-loss R̂S ,ρ(h) (first term)
by requiring from a hypothesis h a higher confidence margin.

Thus, if for a relatively large value of ρ the empirical margin loss of
h remains relatively small, then h benefits from a very favorable
guarantee on its generalization error.

For the theorem to hold, the margin parameter ρ must be selected
beforehand. However, we will show next that the bounds of the
theorem can be generalized to hold uniformly for all ρ ∈ (0, 1] at
the cost of a modest additional term.
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Proof. Let H̃ = {z = (x , y) 7→ yh(x : h ∈ H)} and consider the
functions of the form g = Φρ ◦ f , where f ∈ H̃.
Using the generalization bound for the Rademacher complexity
presented above, for any δ > 0, with probability at least 1− δ, for
any such g

E [g(z)] ≤ 1

m

m∑
i=1

g(zi ) + 2Rm(H̃) +

√
log 1

δ
2m

and, thus, for all h ∈ H.

E [Φρ(yh(x))] ≤ R̂S ,ρ(h) + 2Rm(Φρ ◦ H̃) +

√
log 1

δ
2m .

Since 1u≤0 ≤ Φρ(u) for all u ∈ R, then

R(h) = E [1yh(x)≤0] ≤ E [Φρ(yh(x))]
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From the last two inequalities, we derive

R(h) ≤ R̂S,ρ(h) + 2Rm(Φρ ◦ H̃) +

√
log 1

δ
2m

Since Φρ is 1/ρ-Lipschitz, by Talagrand’s lemma it follows that
Rm(Φρ ◦ H̃) ≤ 1

ρRm(H̃). In addition, we have

Rm(H̃) =
1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σiyih(xi )

]
=

1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σih(xi )

]
= Rm(H).

Using these observations in the inequality above, we obtain the
first bound of the theorem.

The second bound is proved similarly using the other generalization
bound for the Rademacher complexity.
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Here is the version of the Margin Bound theorem valid uniformly
for ρ ∈ (0, r ] for some r > 0.

Theorem. Let H be a set of real-valued functions and fix r > 0.
then, for any δ > 0, with probability at least 1− δ, each of the
following holds for all h ∈ H and ρ ∈ (0, r ]:

R(h) ≤ R̂S,ρ(h) +
4
ρ Rm(H) +

√
log log2

2r
ρ

m
+

√
log 2

δ

2m

R(h) ≤ R̂S,ρ(h) +
4
ρ Rm(H) +

√
log log2

2r
ρ

m
+ 3

√
log 4

δ

2m
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Proof. Let (ρk) and (ϵk), with ϵk ∈ (0, 1], be two sequences. By the
Margin Bound Theorem above, for any fixed k ≥ 1,

P

[
sup

h∈H,k≥1
R(h)− R̂S,ρk

(h) > 2
ρk

Rm(H) + ϵk

]
≤ exp (−2mϵ2k)

Choosing ϵk = ϵ+
√

log k
m , we have that

P

[
sup

h∈H,k≥1
R(h)− R̂S,ρk

(h)− 2
ρk

Rm(H)− ϵk > 0

]
≤

∞∑
k=1

exp (−2mϵ2k)

≤
∞∑
k=1

exp (−2m(ϵ+
√

log k
m )2)

=
∞∑
k=1

exp (−2mϵ2) exp (−2 log k)

= (
∞∑
k=1

1
k2 ) exp (−2mϵ2)

≤ 2 exp (−2mϵ2)
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We choose ρk = r/2k . For any ρ ∈ (0, r ], there exists k ≥ 1 such
that ρ ∈ (ρk−1, ρk ] with ρ0 = r .
For that k, ρ ≤ ρk−1 = 2ρk , hence 1/ρk ≤ 2/ρ and√

log k =
√

log log2(r/ρk) ≤
√

log log2(2r/ρ)

Further, for any h ∈ H, R̂S ,ρk (h) ≤ R̂S ,ρ(h). Thus

P[ sup
h∈H,k≥1

R(h)−R̂S,ρ(h)− 4
ρ Rm(H)−

√
log log2(2r/ρ)

m −ϵ > 0] ≤ exp (−2mϵ2k)

which proves the first statement.
The second statement can be proven in a similar way.
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We can finally state the following general margin bound for linear
hypotheses with bounded weight vectors.

Corollary. Let H = {x 7→ w · x : ∥w∥ ≤ Λ}, assume that
X ⊂ {x : ∥x∥ ≤ r} and fix ρ > 0. Then, for any δ > 0, with
probability at least 1− δ over the choice of a sample S of size m,
the following holds for any h ∈ H:

R(h) ≤ R̂S ,ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m

Proof. The proof follows from the Margin Bound theorems above
and the observation that, under the assumption of the theorem,
the empirical Rademacher complexity can be bounded as

Rm(H) ≤
√

r2Λ2

m
.
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As with the Margin Bound theorem, the bound of the corollary can
be generalized to hold uniformly for all ρ ∈ (0, 1] at the cost of a
additional term. Namely,

Corollary. Let H = {x 7→ w · x : ∥w∥ ≤ Λ}, assume that
X ⊂ {x : ∥x∥ ≤ r} and let ρ ∈ (0, 1]. Then, for any δ > 0, with
probability at least 1− δ over the choice of a sample S of size m,
the following holds for any h ∈ H:

R(h) ≤ R̂S,ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log log2

1
ρ

m
+

√
log 1

δ

2m
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Remarks. The generalization bound for linear hypotheses in the
Corollary does not depend directly on the dimension of the feature
space, but only on the margin.

It suggests that a small generalization error can be achieved when
ρ/(rΛ) is large (small second term) while the empirical margin loss
is relatively small (first term). The latter occurs when few points
are either classified incorrectly or correctly, but with margin less
than ρ.

When S is linearly separable, for a linear hypothesis with geometric
margin ρgeom and the choice ρ = ρgeom, the empirical margin loss
term is zero.
Thus, if ρgeom is relatively large, this provides a strong guarantee
for the generalization error of the corresponding linear hypothesis.
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Remarks. Is there a contradiction with the VC-dimension lower
bounds stating that for any learning algorithm A there exists a bad
distribution for which the error of the hypothesis returned by the
algorithm is Ω(

√
d/m) with a non-zero probability?

No. The bound of the corollary does not rule out such bad cases.
However, for such bad distributions, the empirical margin loss
would be large even for a relatively small margin ρ, and thus the
bound of the corollary would be loose in that case.

The learning guarantee of the corollary hinges upon the hope of a
good margin value ρ.
If there exists a relatively large margin value ρ > 0 for which the
empirical margin loss is small, then a small generalization error is
guaranteed by the corollary.
This favorable margin situation depends on the distribution: while
the learning bound is distribution-independent, the existence of a
good margin is in fact distribution-dependent.

A favorable margin appear relatively often in applications.



Linear SVM - Margin theory
Choose Λ = 1 in the Corollary. Then, for any δ > 0, with
probability at least 1− δ over the choice of a sample S of size m,
the following holds for any h ∈ {x 7→ w · x : ∥w∥ ≤ 1}, ρ ∈ (0, r ]:

R(h) ≤ R̂S ,ρ(h) + 4

√
r2/ρ2

m
+

√
log log2

2r
ρ

m
+

√
log 2

δ

2m

The margin loss function is upper bounded by the hinge loss

Φρ(u) = min
(
1,max(0, 1− u

ρ )
)
≤ max(0, 1− u

ρ )

Thus, for any δ > 0, with probability at least 1− δ, the following
holds for any h ∈ {x 7→ w · x : ∥w∥ ≤ 1}:

R(h) ≤ 1

m

m∑
i=1

max(0, 1−yi (w ·xi ))+4

√
r2/ρ2

m
+

√
log log2

2r
ρ

m
+

√
log 2

δ

2m

This inequality can be used to derive an algorithm that selects w
and ρ > 0 to minimize the right-hand side.
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Since only the first term of the right-hand side depends on w , for
any ρ > 0, the bound suggests selecting w as the solution of the
following optimization problem:

min
∥w∥≤1

ρ

1

m

m∑
i=1

max(0, 1− yi (w · xi ))

Introducing a Lagrange variable λ ≥ 0, the optimization problem
can be written equivalently as

min
w

λ∥w∥2 + 1

m

m∑
i=1

max(0, 1− yi (w · xi ))

The resulting algorithm precisely coincides with SVMs.



Non-Linear SVM
Kernel methods are use to extend SVMs to define non-linear
decision boundaries.

The main idea is based on kernel functions which are used to
implicitly define an inner product in a high-dimensional space H.

Replacing the original inner product in the input space X with such
kernels extends SVMs to a linear separation in H, or, equivalently,
to a non-linear separation in X .

Figure: The classification task consists of discriminating between blue
and red points. (a) No hyperplane can separate the two populations but
(b) a non-linear mapping can be used instead.
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We recall that the dual optimization problem for SVMs

max
α1,...,αm

m∑
i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyj(xi · xj)

subject to
m∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C , for all i = 1, . . . ,m.

which leads to writing the hypothesis h returned by SVMs as

h(x) = sign(w · x + b) = sign

(
m∑
i=1

αiyi (xi · x) + b

)

with

b = yi −
m∑
j=1

αjyj(xj · xi ),



Non-Linear SVM

Let Φ : X 7→ H be a feature map that maps the input data to
some Hilbert space H called feature space.

The feature map Φ is typically nonlinear and H may be infinite
dimensional.

By mapping the input data x1, . . . , xm ∈ X to H, we expect that
the features Φ(x1), . . . ,Φ(xm) will be linearly separable in H.

Next, assume that there is a kernel function K : X × X 7→ R on
the input space satisfying

K (xi , xj) = ⟨Φ(xi ),Φ(xj)⟩H.
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Under these assumptions, we can now reformulate the SVM
optimization problem by replacing the inner products x · x ′ with
kernels K (x , x ′):

max
α1,...,αm

m∑
i=1

αi −
1

2

m∑
i ,j=1

αiαjyiyjK (xi , xj)

subject to
m∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C , for all i = 1, . . . ,m.

so that we write the hypothesis h returned by SVMs as

h(x) = sign(w · x + b) = sign

(
m∑
i=1

αiyiK (xi , x) + b

)
with

b = yi −
m∑
j=1

αjyjK (xj , xi ).
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Definition Let X ̸= ∅ be a set. A function k : X × X → R is
called a kernel on X iff there is a Hilbert space H and a feature
map Φ : X → H such that for any x , x ′ ∈ X

k(x , x ′) = ⟨Φ(x ′),Φ(x)⟩H

holds.

Remark. Given a kernel k , neither Φ nor H are uniquely
determined.
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Example 1. Let X = R and k(x , x ′) = x ′ x . Obviously, k is a
kernel on X with Φ1(x) = x being the identity map and H1 = R.

Next Consider Φ2 : X → R2 = H2 given by

Φ2(x) =
1√
2
(x , x).

We have

⟨Φ2(x
′),Φ2(x)⟩R2 =

x ′x√
2
+

x ′x√
2
= x ′x = k(x , x ′),

and hence k is a kernel on X also for Φ2 and H2.
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Example 2. Let X ̸= ∅ and {fn}∞n=1 be a set of functions
fn : X → R with the property that fn(x) ∈ ℓ2 for any x ∈ X . Then

k(x , x ′) =
∞∑
i=1

fn(x) fn(x ′)

is a kernel on X with Φ(x) = fn(x), Φ : X → ℓ2, i.e., the sum

⟨Φ(x ′),Φ(x)⟩ℓ2 =
∞∑
i=1

fn(x) fn(x ′) = k(x , x ′)

is well defined since fn(x) ∈ ℓ2 for any x ∈ X by Hölder’s inequality.
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Properties of kernels

1. If k1, k2 are kernels then k1 + k2 is a kernel.

2. If α ≥ 0 and k is a kernel, then αk is a kernel.

Remark: The space of kernels forms a cone but not a vector
space as shown by the argument below.

Let k1, k2 be kernels on X such that, for some x ∈ X ,

k1(x , x)− k2(x , x) < 0.

If k1 − k2 is kernel, then there exist a map Φ : X → H such
that

0 ≤ ⟨Φ(x),Φ(x)⟩ = k1(x , x)− k2(x , x) < 0,

giving a contradiction. So k1 − k2 is not a kernel.
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3. Let k be a kernel on X and A be a map, A : Ȳ
¯
→ X , where Y

is another set.
Then, k(x , x ′) = k(A(x),A(x ′)), for x , x ′ ∈ X defines a kernel
on Y .
This include the special case where A is a restriction map.
Hence, if Y ⊂ X , then k|Y×Y is a kernel.

4. If k1 is a kernel on X1 and k2 is a kernel on X2, then k1.k2 is a
kernel on the tensor space X1 × X2.
In particular, if X1 = X2 = X , then

k(x , x ′) = k1(x , x
′)k2(x , x

′), x , x ′ ∈ X

defines a kernel on X .
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Example 3 (Polynomial kernels).
By the properties of kernels, for any n > 0, the map
kn(x , x

′) = (xx ′)n, where x , x ′ ∈ X is a kernel.
Hence, if p : X → R is of the form,

p(t) = ant
n + ...+ a1t + a0

with non-negative coefficients ai , then k(x , x ′) = p(xx ′), with
x , x ′ ∈ X is a kernel.

In general, the function: k(z , z1) = (⟨z , z ′⟩+ c)m with
z , z ′ ∈ Cd , c ≥ 0, is a polynomial kernel on Cd .
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Example 4 (Exponential kernels).
Using the Taylor expansion, one can express the exponential
function in terms of polynomials.

Hence, for d ∈ N, x , x ′ ∈ Rd , k(x , x ′) = exp(⟨x , x ′⟩) is a kernel
on Rd .

Similarly, let d ∈ N, γ > 0, z = (z1, ..., zd), z ′ = (z ′1, ..., z
′
d) ∈ Cd .

Then

k
(z,z ′)
γ,Cd = exp(−γ−2

d∑
j=1

(zj ,−z̄ ′j )
2)

is a kernel on Cd .
Its restriction kγ = exp(− ||x−x ′||22

γ2 ), for x , x ′ ∈ Rd , is a kernel on

Rd .
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Definition. A function k : X × X → R is positive definite if for
all n ∈ N, α1, . . . , αn ∈ R, and all x1, . . . , xn ∈ X , we have

n∑
i=1

n∑
j=1

αiαjk(xi , xj) ≥ 0

Furthermore, it is strictly positive definite if for mutually distinct
x1, . . . , xn ∈ X , equality only occurs when α1 = · · · = αn = 0.
k is symmetric if k(x , x ′) = k(x ′, x), for all x , x ′ ∈ X .

Given a function k : X × X → R, the matrix K = (k(xi , xj))i ,j is
the Gram matrix of k with respect to the vectors x1, . . . , xn in X .

We have that

n∑
i=1

n∑
j=1

αiαjk(xi , xj) ≥ 0 ⇐⇒ K is positive definite.
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Theorem A function k : X × X → R is a kernel if and only if it is
symmetric and positive definite

Proof. (=⇒)
If k is a kernel, then

k(x , x ′) = ⟨Φ(x ′),Φ(x)⟩ = ⟨Φ(x),Φ(x ′)⟩ = k(x ′, x)

is symmetric.
Also, for any n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ X , we observe
that

n∑
i ,j=1

αiαjk(xi , xj) = ⟨
n∑

i=1

αiΦ(xi ),
n∑

j=1

αjΦ(xj)⟩ = ||
n∑

i=1

αiΦ(xi )||2 ≥ 0

Hence, k is positive definite.
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(⇐=)
Assume k : X × X → R is symmetric and positive definite.
Define

Hpre =

{
n∑

i=1

αi k(· , xi ) : n ∈ N, αi ∈ R, xi ∈ X

}
.

For any f =
∑n

i=1 αik(· , xi ), g =
∑n

j=1 βjk(· , x ′j ) ∈ Hpre , set

⟨f , g⟩ :=
n∑

i=1

n∑
j=1

αiβjk(x
′
j , xj).

We want to show that this operation defines an inner product on
Hpre , i.e., that ⟨·, ·⟩ is bilinear, symmetric and positive definite.

First we observe that, for any x ′j ∈ X , we have
f (x ′j ) =

∑n
i=1 αik(x

′
j , xi ), hence ⟨f , g⟩ =

∑m
j=1 βj f (x

′
j ). Similarly,

we can write ⟨f , g⟩ =
∑n

i=1 αig(xi ).
This shows that ⟨f , g⟩ is independent of the representation of f
and g .
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By the assumption on k , it follows that ⟨f , g⟩ is symmetric,
bilinear and positive, that is

⟨f , f ⟩ =
n∑

i=1

n∑
j=1

αiαjk(xi , xj) ≥ 0

for any α1, . . . , αn ∈ R, x1, . . . , xn ∈ X , f ∈ Hpre .

Note that these properties imply the Cauchy-Schwartz inequality,

|⟨f , g⟩|2 ≤ ⟨f , f ⟩⟨g , g⟩

for all f , g ,∈ Hpre .

It also follows that if f = 0, then ⟨f , f ⟩ = 0.

It remains to show that ⟨f , f ⟩ = 0 implies f = 0.
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Since ⟨f , g⟩ =
∑n

i=1 αig(xi ), it follows that

n∑
i=1

αik(x , xi ) = ⟨f , k(x , xi )⟩ = f (x)

Using this observation and Cauchy-Schwartz inequality, for any
x ∈ X we have

|f (x)|2 = |
n∑

i=1

αik(x , xi )|2 = |⟨f , k(·, x)⟩|2 ≤ ⟨k(·, x), k(·, x)⟩⟨f , f ⟩.

Thus, ⟨f , f ⟩ = 0 implies f (x) = 0 for any x ∈ X , hence f = 0.

The proof follows using a continuity argument, that is by taking H
to be the completion of Hpre .



Reproducing Kernel Hilbert Space

Definition. Let X ̸= ∅ and H be a K-Hilbert function space over
X , i.e., a Hilbert space that consists of functions with domain in X
and range into K (e.g., K = R or = C).

▶ A function k : X × X → K is called a reproducing kernel of
H if k(·, x) ∈ H for all x ∈ X and it satisfies the reproducing
property

f (x) = ⟨f , k(·, x)⟩H
for all f ∈ H and all x ∈ X .

▶ The space H is called a reproducing kernel Hilbert space
(RKHS) over X if for all x ∈ X the Dirac functional
δx : H → K defined by

δx(f ) = f (x), f ∈ H,

is continuous.
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Remark. A RKHS is a space of functions, hence L2(Rd) is not a
RKHS.

If H is a RKHS, then norm convergence implies pointwise
convergence.

To show that this is the case, let (fn) ∈ H be such that
∥fn − f ∥H → 0 as n → ∞ with f ∈ H.
It follows that for any x ∈ X there is a constant c such that

|δx(fn)− δx(f )| ≤ c∥f − fn∥H.

Hence
lim
n→∞

fn(x) = lim
n→∞

δx(fn) = δx(f ) = f (x).
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Proposition (Reproducing kernels are kernels).
Let H be a Hilbert function space over X that has a reproducing
kernel k .
Then H is a RKHS and H is also a feature space of k , where the
feature map Φ : X → H is given by

Φ(x) = k(·, x), x ∈ X .

We call Φ the canonical feature map of kernel k.
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Proof. First we show that δx is continuous so that H is a RKHS.
Since k is a reproducing kernel in H, for any f ∈ H,

|δx(f )| = |f (x)| = |⟨f , k(·, x)⟩H | ≤ ∥f ∥∥k(·, x)∥.

This shows that δx is continuous for any x ∈ X .
Therefore, H is a RKHS .

Next , we show that H is a feature space of k with feature map Φ.
For a fixed x ′ ∈ X , let f = k(·, x ′).
Then, for any x ∈ X ,

⟨Φ(x ′),Φ(x)⟩ = ⟨k(·, x ′), k(·, x)⟩ = ⟨f , k(·, x)⟩ = f (x) = k(x , x ′).

Therefore, H is a feature space of k with a feature map Φ.
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We have just seen that every Hilbert function space with a
reproducing kernel is a RKHS.
We next show that, conversely, every RKHS has a (unique)
reproducing kernel over X and that this kernel can be determined
by the Dirac functionals δx , x ∈ X .

Theorem (Every RKHS has a unique reproducing kernel). Let
H be a RKHS over X and H′ be the dual space of H.
Then k : X × X → K defined by

k(x , x ′) = ⟨δx , δx ′⟩H′ , x , x ′ ∈ X ,

is the only reproducing kernel of H.

Furthermore, if (ei )i∈I is an orthonormal basis of H, then for all
x , x ′ ∈ X , we have

k(x , x ′) =
∑
i∈I

ei (x)ei (x ′).
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Proof.
First, we show that k is a reproducing kernel by showing that the
reproducing property holds.
By Riesz representation theorem, there exists an isometric
anti-linear isomorphisim I : H′ → H that assigns to any g ′ ∈ H′ a
representing element in H; that is

g ′(f ) = ⟨f , Ig ′⟩, for all f ∈ H, g ′ ∈ H′.

In particular, for g ′ = δx ∈ H′, f = I δx ′ ∈ H, then

⟨I δx ′ , I δx⟩H = δx(I δx ′).

With this observation, for all x , x ′ ∈ X ,

k(x , x ′)
def
= ⟨δx , δx ′⟩H′

Riesz
= ⟨I δx ′ , I δx⟩H = δx(I δx ′)

def
= I δx ′(x).

This shows that k(·, x ′) = I δx ′ for all x
′ ∈ X . Hence,

f (x ′)
def
= δx ′(f ) = ⟨f , I δx ′⟩H = ⟨f , k(·, x ′)⟩, for all x ′ ∈ X .

This shows that k has the reproducing property.
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To show uniqueness, let k̃ be an arbitrary reproducing kernel on H.

For any x ′ ∈ X , given a basis (ei )i∈I ∈ H, we have

k̃(·, x ′) =
∑
i∈I

⟨k̃(·, x ′), ei ⟩ei =
∑
i∈I

⟨ei , k̃(·, x ′)⟩ei .

By the reproducing property of k̃, we have

⟨ei , k̃(·, x ′)⟩ei = ei (x ′)ei .

Therefore,
k̃(·, x ′) = ei (x ′)ei .

Since k̃ and (ei )i∈I are arbitrarily chosen, we find k̃ = k .

Therefore, k is the only reproducing kernel of H.



Reproducing Kernel Hilbert Space

The theorem above shows that a RKHS uniquely determines its
reproducing kernel (which is also a kernel).
The following theorem now shows that, conversely, every kernel
has a unique RKHS. Thus, it establishes a one-to-one relation
between a kernel and a RKHS.

Theorem Let X ̸= ∅ and k be a kernel over X with feature space
H0 and feature map Φ0 : X → H0. Then

H := {f : X → K | ∃w ∈ H0 with f (x) = ⟨w ,Φ0(x)⟩H0 for any x ∈ X}

equipped with the norm

∥f ∥H := inf {∥w∥H0 : w ∈ H0 with f = ⟨w ,Φ0(·)⟩H0}

is the only RKHS for which k is a reproducing kernel.



Reproducing Kernel Hilbert Space

Moreover, the operator V : H0 → H defined by

Vw = ⟨w ,Φ0(·)⟩H0 for w ∈ H0

is a metric surjection. That is, VBH0 = BH, where BH0 and BH
are the open unit balls of H0 and H. Also, the set

Hpre := {
n∑

i=1

αi k(·, xi ) : n ∈ N, α1, . . . , αn ∈ K, x1, ..., xn ∈ X}

is dense in H and, for f :=
∑n

i=1 αik(·, xi ) ∈ Hpre , we have

∥f ∥2H =
n∑

i=1

n∑
j=1

αiαj⟨k(·, xi ), k(·, xj)⟩H =
n∑

i=1

n∑
j=1

αiαjk(xj , xi ).



Reproducing Kernel Hilbert Space
Proof. We first show that H is a Hilbert space.
From the definition, we have that H is a vector space of functions
from X → K and V : H0 → H is a surjective linear operator.

Using V , for any f ∈ H, we write

∥f ∥H = inf
w∈V−1(f )

∥w∥H0 .

To show that ∥·∥H is a Hilbert space norm, let
(wn) ⊂ kerV = {w ∈ H0|Vw = 0} with the property that
limn→∞ wn = w . Then

⟨w ,Φ(x)⟩H0 = lim
n→∞

⟨wn,Φ(x)⟩ = 0, for any x ∈ X ,

showing that w ∈ kerV and, hence, kerV is closed.

Denoting H̃ = (kerV )⊥, we can write H0 = kerV ⊕ H̃.
Then, by construction, the restriction V|H̃ : H̃ → H of V to H̃ is
injective.



Reproducing Kernel Hilbert Space

We will show that V|H̃ is also surjective.

Let f ∈ H and w ∈ H0 with f (x) = ⟨w ,Φ0(x)⟩H0 = Vw(x).
We can write w = w0 + w̃ with w0 ∈ kerV and
w̃ ∈ (kerV )⊥ = H̃.
Then f = V (w0 + w̃) = V w̃ = V|H̃w̃ .
This shows that V|H̃ is surjective and, thus, V|H̃ is also bijective.

Let (V|H̃)
−1 be the inverse operator of V|H̃. Then we have

∥f ∥2H = inf
w∈V−1({f })

∥w∥2H0
= inf

w0∈kerV ,w̃∈H̃,w0+w̃∈V−1({f })
∥w0+w̃∥2H0

= inf
w0∈kerV ,w̃∈H̃,w0+w̃∈V−1({f })

∥w0∥2H0
+ ∥w̃∥2H0

= ∥(V|H̃)
−1f ∥2

H̃
.

Since H̃ is a Hilbert space norm, then ∥·∥H is also a Hilbert space
norm. Hence we have shown that V|H̃ is an isometric isomorphism

from H̃ to H.



Reproducing Kernel Hilbert Space

To show that k is a reproducing kernel of H, note that, for any
x ∈ X , by definition

k(·, x) = ⟨Φ0(x),Φ0(·)⟩ = VΦ0(x) ∈ H.

Since ⟨w ,Φ0(x)⟩ = Vw(x) = 0 for any w ∈ kerV , then

Φ0(x) ∈ (kerV )⊥ = H̃.

Since V|H̃ : H̃ → H is isometric, we obtain that

f (x) = ⟨(V|H̃)
−1f ,Φ0(x)⟩H0 = ⟨f ,V|H̃Φ0(x)⟩H = ⟨f , k(·, x)⟩H

for all f ∈ H, x ∈ X , which is the reproducing property of k .
Therefore, H is a RKHS by Proposition above.



Reproducing Kernel Hilbert Space
We next show that

Hpre := {
n∑

i=1

αi k(·, xi ) : n ∈ N, α1, . . . , αn ∈ K, x1 . . . , xn ∈ X}

is dense in any RKHS Ĥ with k as the reproducing kernel.
By the definition of reproducing kernel, we observe that
k(·, x) ∈ Ĥ for all x ∈ X . Hence, Hpre ⊂ Ĥ.

Now we suppose that Hpre is not dense in Ĥ.
Then, (Hpre)

⊥ ̸= {0}. Therefore, there exists a function
g ∈ (Hpre)

⊥ and a x ∈ X with g(x) ̸= 0. Since g ∈ (Hpre)
⊥ and

k(·, x) ∈ Ĥ, ⟨g , k(·, x)⟩ = 0.
By the reproducing property of k , ⟨g , k(·, x)⟩ = g(x) ̸= 0. This is
a contradiction. Therefore, Hpre is dense in any RHKS.

Now, for any f :=
∑n

i=1 αik(·, xi ) ∈ Hpre , by the reproducing
property,

∥f ∥2Ĥ =
n∑

i=1

n∑
j=1

αiαj⟨k(·, xi ), k(·, xj)⟩Ĥ =
n∑

i=1

n∑
j=1

αiαjk(xj , xi ).



Reproducing Kernel Hilbert Space
Finally we prove that k has only one RKHS.
Let H1 and H2 be two RKHSs of k .
We just proved that Hpre is dense in both H1 and H2 and that the
norms of H1 and H2 coincide on Hpre .
Choose f ∈ H1. There exists a sequence (fn) ⊂ Hpre with
∥fn − f ∥H1 → 0. Since Hpre ⊂ H2, the sequence (fn) is also
contained in H2, and since the norms of H1 and H2 coincide on
Hpre , the sequence (fn) is a Cauchy sequence in H2. Therefore,
there exists a g ∈ H2 with ∥fn − g∥H2 → 0.
Since the convergence with respect to a RHKS norm implies
pointwise convergence, then f (x) = g(x) for all x ∈ X , hence
f ∈ H2. Furthermore, ∥fn − f ∥H1 → 0 and ∥fn − f ∥H2 → 0 imply

∥f ∥H1 = lim
n→∞

∥fn∥H1 = lim
n→∞

∥fn∥Hpre = lim
n→∞

∥fn∥H2 = ∥f ∥H2 .

Therefore, H1 is isometrically included in H2.
Similarly, we can prove that H2 ⊂ H1. So the reproducing kernel k
has a unique RKHS.



Reproducing Kernel Hilbert Space

Remarks. The theorem describes the RKHS H of a given kernel k
as the ‘smallest’ feature space of k in the sense that there exists a
canonical metric surjection V from any other feature space H0 of
k onto H.

Recall that the nonlinear SVM approach produces decision
functions of the form x 7→ ⟨w ,Φ0(x)⟩, where Φ0 : X → H0 is a
fature map of k and w ∈ H0 is an appropriate weight vector.
The space

H := {f : X → K | ∃w ∈ H0 with f (x) = ⟨w ,Φ0(x)⟩H0 for any x ∈ X}

given in the Theorem states that the RKHS associated with k
consists exactly of all possible functions of such form.

Moreover, by the theorem, this set of functions dose not change if
we consider different feature spaces or feature maps of k .



Properties of RKHSs - Boundedness

Recall that, for a function f on a topological space Z , the uniform
norm of f is given by ∥f ∥b = supz∈Z |f (z)|.
A function f defined on Z is bounded if ∥f ∥b < ∞.

For kernel functions k on X × X , we introduce the norm ∥ · ∥∞

∥k∥∞ := sup
x∈X

√
k(x , x).

Note that in general, ∥k∥b ̸= ∥k∥∞.
However, for a kernel k on X with RKHS H, we have some
remarkable properties.



Properties of RKHSs - Boundedness
Lemma Let k : X × X → K be a kernel on a reproducing kernel
Hilbert space H with the feature map Φ : X → H. Then k is
bounded iff

∥k∥∞ = sup
x∈X

√
k(x , x) < ∞.

Proof.
By the reproducing property of H, for any x , x ′ ∈ X ,

k(x , x ′) =
〈
Φ(x ′),Φ(x)

〉
=
〈
k(·, x), k(·, x ′)

〉
.

Hence, by the Cauchy-Schwarz inequality, we get that

|k(x , x ′)|2 = |
〈
k(·, x), k(·, x ′)

〉
|2

≤ ∥k(·, x)∥2H · ∥k(·, x ′)∥2H
= k(x , x) · k(x ′, x ′).

Conversely

sup
(x ,x ′)∈X×X

|k(x , x ′)| ≥ sup
(x ,x)∈X×X

k(x , x)

and the proof follows by choosing x ′ = x .



Properties of RKHSs - Boundedness

We can relate the boundedness of k to the boundedness of its
feature map Φ.
Lemma Let k : X × X → K be a kernel on a reproducing kernel
Hilbert space H with feature space H0 and feature map
Φ : X → H0. Then k is bounded iff Φ is bounded.

Proof. Since Φ : X → H0 is a feature map for k , by the
reproducing property

∥Φ(x)∥2H0
= ⟨Φ(x),Φ(x)⟩H0

= ⟨k(·, x), k(·, x)⟩H = k(x , x).

Taking the supremum over X on both sides gives ∥Φ∥2b = ∥k∥2∞.
Thus, ∥Φ∥2b < ∞ iff ∥k∥2∞ < ∞.



Properties of RKHSs - Boundedness
We can now characterize the boundedness of the reproducing
kernel in terms of the feature space elements f ∈ H.
Lemma Let k : X × X → K be a kernel on X with a RKHS H.
Then k is bounded iff every f ∈ H is bounded.
Moreover, in this case the induction map (id) : H → ℓ∞(X ) is
continuous, with

∥(id) : H → ℓ∞(X )∥ = ∥k∥∞.

Proof. ( =⇒ ) Assume k is bounded. By virtue of the properties
of RKHS’s for H and the Cauchy-Schwarz inequality, we have for
all x ∈ X and f ∈ H,

|f (x)|2 = | ⟨f , k(·, x)⟩H |2 ≤ ∥f ∥2H k(x , x).

Taking the supremum over X gives

∥f ∥b ≤ ∥f ∥H ∥k∥∞.

Since k is assumed bounded and f ∈ H =⇒ ∥f ∥H < ∞, then we
have ∥f ∥b < ∞, showing boundedness.



Properties of RKHSs - Boundedness

This also shows that (id) : H → ℓ∞(X ) is well-defined, and that

∥(id) : H → ℓ∞(X )∥ ≤ ∥k∥∞.

( ⇐= ) If every f ∈ H is bounded, the inclusion (id) : H → ℓ∞(X )
is well-defined.
(id) is a linear map since, for any α ∈ K and f , g ∈ H,

(id)(αf+g)(x) = (αf+g)(x) = αf (x)+g(x) = α(id)(f )(x)+(id)(g)(x).

We will use the Closed Graph Theorem to prove that (id) is
bounded. For that, let (fn)

∞
n=1 ⊂ H be such that

lim
n→∞

∥fn − f ∥H = 0

and lim
n→∞

∥id(fn)− g∥∞ = lim
n→∞

∥fn − g∥∞ = 0

for some f ∈ H and g ∈ ℓ∞(X ).



Properties of RKHSs - Boundedness

Then, we have that for any x ∈ X ,

lim
n→∞

|fn(x)− f (x)|2

= lim
n→∞

| ⟨fn, k(·, x)⟩H − ⟨f , k(·, x)⟩H |2 (reproducing kernel property)

= lim
n→∞

| ⟨fn − f , k(·, x)⟩H |2 (inner product)

≤ lim
n→∞

∥fn − f ∥2H∥k(·, x)∥2H (Cauchy-Schwarz inequality)

= 0. (by hypothesis)

Also, since |fn(x)− g(x)| ≤ ∥fn − g∥∞ for any x ∈ X , it follows
from our assumption on (fn) that limn→∞ |fn(x)− g(x)| = 0 for
every x ∈ X , implying that f (x) = g(x) for all x ∈ X iff
f = (id)(f ) = g .
Thus, (id) : H → ℓ∞(X ) has a closed graph and hence is bounded.
Since (id) is linear, it is also continuous.



Properties of RKHSs - Boundedness

Finally, for any x ∈ X we have that

|k(x , x)| ≤ ∥k(·, x)∥∞ ≤ ∥(id) : H → ℓ∞(X )∥∥k(·, x)∥H
= ∥(id) : H → ℓ∞(X )∥

√
(k(x , x)

which implies that√
k(x , x) ≤ ∥(id) : H → ℓ∞(X )∥.

Since this holds for every x ∈ X , taking the sup over X on both
sides gives that

∥k∥∞ ≤ ∥(id) : H → ℓ∞(X )∥. (6)

By a Lemma above, this shows that k is bounded.



Properties of RKHSs - Measurability

The measurability of a kernel k can be characterized in terms of
the measurability of the functions in the associated RKHS.

Lemma Let (X , µ) be a measurable space and k be a kernel on X
with reproducing kernel Hilbert space H. Every f ∈ H is
µ-measurable iff the restricted kernel function k(·, x ′) : X → R is
µ-measurable for all x ′ ∈ X .

Proposition. Let (X , µ) be a measurable space and k be a kernel
on X with reproducing kernel Hilbert space H such that the
restricted kernel function k(·, x ′) : X → R is µ-measurable for all
x ′ ∈ X . If H is separable, then

(i) the canonical feature map Φ : X → H is µ-measurable,

(ii) the full kernel k : X × X → R is µ× µ-measurable on the
product space X × X .



Properties of RKHSs - Integrability
Theorem Let (X , µ) be a measurable space, µ be a σ-finite
measure on X , and H be a separable RKHS over X with
measurable kernel k : X × X → R.
If there exists p ∈ [1,∞) such that

∥k∥Lp :=
(∫

X
k(x , x)p/2 dµ(x)

)1/p

< ∞,

then the following holds:

(i) H consists of Lp(µ)-integrable functions.

(ii) The inclusion map (id) : H → Lp(µ) is continuous.

(iii) The adjoint of the inclusion map exists. It is the operator
Sk : Lp

′ → H given by

Skg(x) =

∫
X
k(x , x ′)g(x ′) dµ(x ′)

for g ∈ Lp
′
, x ∈ X , and conjugate exponents 1

p + 1
p′ = 1.

Note: The Lp norm notation here is not the standard one.



Properties of RKHSs - Integrability

Proof. (i),(ii) Fix f ∈ H. Since ∥k(·, x)∥H =
√

k(x , x) then

∥f ∥pLp =
∫
X
|f (x)|p dµ(x)

=

∫
X
| ⟨f , k(·, x)⟩ |p dµ(x)

≤ ∥f ∥pH
∫
X
(k(x , x))p/2 dµ(x)

= ∥f ∥pH ∥k∥pLp

This shows that f ∈ Lp(µ) and that (id) : H → Lp(µ) is
continuous with

∥(id) : H → Lp(µ)∥ ≤ ∥k∥Lp .



Properties of RKHSs - Integrability
(iii) For g ∈ Lp

′
, using Cauchy-Schwartz and Hölder’s inequalities

we have that∫
X
|k(x , x ′)g(x ′)| dµ(x ′) ≤

√
k(x , x)

∫
X

√
k(x ′, x ′)

∣∣g(x ′)∣∣ dµ(x ′)
≤
√

k(x , x)∥k∥Lp∥g∥Lp′

This shows the integrability of k(x , x ′)g(x ′) and thus the existence
of the integral defining Skg(x) for all x ∈ X .
Since

√
k(x ′, x ′) = ∥Φ(x ′)∥H, the last inequality shows that

x ′ → ∥Φ(x ′)g(x ′)∥H is integrable, Finally, we have

Skg(x) =

∫
X

〈
Φ(x ′), Φ(x)

〉
H g(x ′) dµ(x ′)

=

〈∫
X
g(x ′)Φ(x ′) dµ(x ′), Φ(x)

〉
H
.

This shows that Skg := ḡ =
∫
X g(x ′)Φ(x ′) dµ(x ′) ∈ H.



Properties of RKHSs - Integrability

Remark: Under the conditions of Theorem above, using the fact
that a bounded linear operator has a dense image if and only if its
adjoint is injective, one can also derive the following properties for
the feature space H in terms of the adjoint map Sk

1. H is dense in Lp iff the adjoint operator Sk : Lp
′ → H is

injective.

2. The adjoint Sk : Lp
′ → H has a dense image Sk(L

p′) iff the
inclusion (id) : H → Lp is injective.



Properties of RKHSs - Integrability
Theorem Let (X , µ) be a measurable space, µ be a σ-finite
measure on X , and H be a separable RKHS over X with
measurable kernel k : X × X → R such that

∥k∥L2 =
(∫

X
k(x , x) dµ(x)

)1/2

< ∞.

Then

(i) Sk : L2 → H given by

Skg(x) =

∫
X
k(x , x ′)g(x ′) dµ(x ′)

for g ∈ L2, x ∈ X , is a Hilbert-Schmidt operator with

∥Sk∥HS = ∥k∥L2 ;

(ii) the integral operator Tk = S∗
kSk : L2(µ) → L2(µ) is compact,

positive, self-adjoint.

Recall that ∥S∥2HS :=
∑

i ∥Sei∥2L2 where {ei} ⊆ H is an ONB of H.



Properties of RKHSs - Continuity

We define a (pseudo)-metric in terms of k and use this to
characterize continuity.

Definition Let X be a topological vector space. A kernel k on X is
separately continuous if k(·, x) : X → R is continuous for all
x ∈ X .

Lemma Let X be a topological space and k a kernel on X with
reproducing kernel Hilbert space H.
Then k is bounded and separately continuous iff every f ∈ H is
bounded and continuous. In this case, the inclusion map
id : H → Cb(X ) is continuous and

∥id : H → Cb(X )∥ = ∥k∥∞.



Properties of RKHSs - Continuity

Definition. Let k be a kernel on X with a feature map
Φ : X → H.
The kernel metric is given by;

dk(x , x
′) = ∥Φ(x)− Φ(x ′)∥H x , x ′ ∈ X .

We remark that dk is a pseudo-metric in general since
dk(x , x

′) = 0 for not imply that x = x ′ in general.
It is a metric if Φ is injective.

Furthermore, we have

dk(x , x
′) =

√
k(x , x)− 2k(x , x ′) + k(x ′, x ′)

showing that the definition of dk is independent of Φ.



Properties of RKHSs - Continuity

The following act shows how the kernel metric can be used to
characterize the continuity of the kernel k .

Proposition. Let (X , τ) be a topological vector space and k a
kernel on X with feature space H and feature map Φ. The
following are equivalent:

i. k is continuous.

ii. k is separately continuous and x 7→ k(x , x) is continuous.

iii. Φ is continuous.

iv. The map id : (X , τ) → (X , dk) is continuous.



Properties of RKHSs - Continuity

Proof.
(i) =⇒ (ii). Trivial.
(ii) =⇒ (iv). By the formula of dk in terms of the kernel and the
assumption, we see that dk(·, x) : (X , τ) → R is continuous for
every x ∈ X .
Consequently, {x ′ ∈ X : dk(x

′, x) < ϵ} is open with respect to τ
and therefore id : (X , τ) → (X , dk) is continuous.
(iv) =⇒ (iii). This follows from the fact that Φ : (X , dk) → H is
continuous.
(iii) =⇒ (i). Fix x1, x

′
1 ∈ X and x2, x

′
2 ∈ X . Then we have

|k(x1, x ′1)−k(x2, x
′
2)| ≤ |⟨Φ(x ′1),Φ(x1)−Φ(x2)⟩|+|⟨Φ(x ′1)−Φ(x ′2),Φ(x2)⟩|

≤ ∥Φ(x ′1)∥ · ∥Φ(x1)− Φ(x2)∥+ ∥Φ(x2)∥ · ∥Φ(x ′1)− Φ(x ′2)∥.

From this we conclude that k is continuous.



Properties of RKHSs - Compactness

We have seen above that a RKHS over X is continuously
contained in ℓ∞ if it has a bounded kernel.

The following proposition provides an additional condition so that
this inclusion is compact

Proposition. Let k be a kernel on a space X with RKHS H and
canonical feature map Φ : X → H. If Φ(X ) is compact in H then
the inclusion map given by

id : H → ℓ∞(X )

is also compact.



Properties of RKHSs - Compactness

Proof. Since Φ(X ) is compact, then k is bounded and the space
(X , dk) is compact with respect to the kernel metric dk .

Let C (X , dk) be the space of functions f : X → R that are
continuous with respect to dk .
For x , x ′ ∈ X and f ∈ we have

|f (x)− f (x ′)| = |⟨f ,Φ(x)− Φ(x ′)⟩| ≤ ∥f ∥H · dk(x , x ′),

showing that f is continuous on (X , dk).
It follows that the unit ball BH ⊂ H is equicontinuous and
bounded.

By Arzela-Ascoli Theorem, BH is compact in C (X , dk) and, hence,
in ℓ∞(X ) since C (X , dk) ⊂ ℓ∞(X ).
This shows that id : H → ℓ∞(X ) is compact.



Properties of RKHSs - Compactness

We establish a sufficient condition for the separability of a RKHS.

Proposition. Let X be a separable topological space and k a
continuous kernel on X .
Then the RKHS H of k is separable.

Proof. By the Proposition about compactness above, the
canonical feature map Φ : X → H is continuous, thereby implying
that Φ() is separable. It follows that vector space

Hpre := {
n∑

i=1

αi k(·, xi ) : n ∈ N, α1, . . . , αn ∈ k, x1, . . . , xn ∈ X}

is also separable.
We observed in the proof of a previous theorem that Hpre is dense
in H. Hence, the separability of H follows by completion.



Properties of RKHSs - Mercer’s Theorem
The celebrated Mercer’s Theorem shows the existence of a series
representation for continuous kernels that are defined on a
compact domain.

This series representation can be used to characterize the
corresponding RKHSs.

Recall: we proved that the integral operator Tk = S∗
kSk , where

Sk : L2 → H is given by

Skg(x) =

∫
X
k(x , x ′)g(x ′) dµ(x ′)

is compact, positive and self-adjoint.
By the Spectral Theorem, there exists a countable ONS (ei ) ⊂ L2

and a family (λi ) ⊂ R converging to 0 such that, for f ∈ L2

Tk f =
∑
i

λi ⟨f , ei ⟩ ei .



Properties of RKHSs - Mercer’s Theorem

In addition, {λi : i ∈ I} is a set of non-zero eigenvalues of Tk .

Set ẽi := λ−1
i Skei ∈ H, i ∈ I .

It follows that S∗
k ẽi = λ−1

i Tkei = ei (using the fact that λi is an
eigenvalue of Tk) and λi ẽi = Skei for all i ∈ I .
From this, we have that

λiλj⟨ẽi , ẽj⟩H = ⟨Skei , Skej⟩H = ⟨ei , S∗
kSkej⟩L2 = ⟨ei ,Tkej⟩L2

= λj⟨ei , ej⟩L2

This shows that the set (
√
λi ẽi )i∈I is an ONS in H.

Mercer’s Theorem shows that, under certain conditions, this set is
an ONB of H.



Properties of RKHSs - Mercer’s Theorem

Theorem (Mercer’s). Let X be compact metric space and
k : X × X → R be continuous. Let µ be a finite Borel measure
with supp(µ) = X .
Then there exists a countable orthonormal sequence (ei )i∈I ⊂ H
and a family (λi )i∈I ⊂ R converging to 0 such that

k(x , x ′) =
∑
i∈I

λi ei (x) ei (x
′) x , x ′ ∈ X

with absolute and uniform convergence.
Note that above we assumed

|λ1| ≥ |λ2| ≥ |λ3| ≥ . . .



Properties of RKHSs - Mercer’s Theorem

Remarks:

▶ Mercer’s Theorem implies that Φ : X 7→ ℓ2 given by

Φ(x) = (
√
λiei (x))i∈I , x ∈ X ,

is a feature map of k with k(x , x ′) = ⟨Φ(x ′),Φ(x)⟩.
▶ With the assumptions of Mercer’s theorem, if (ai )i∈I ⊂ ℓ2(I )

and x ∈ X , J ⊂ I , then∑
i∈J

|ai
√
λiei (x)| ≤

√∑
i∈J

a2i

√∑
i∈J

λie2i (x) = ∥(ai )∥ℓ2(I )·
√
k(x , x).



Properties of RKHSs - Mercer’s Theorem
Theorem (Mercer’s Representation theorem for RKHS)
With the assumptions from previous theorem, let

H :=

{∑
i∈I

ai
√
λi ei : (ai ) ∈ ℓ2(I )

}
.

For
f =

∑
ai
√

λiei ∈ H, g =
∑

bi
√

λiei ∈ H

set
⟨f , g⟩H =

∑
i∈I

aibi .

Then H equipped with ⟨·, ·⟩H is the RKHS of the kernel of k .

Furthermore, T
1/2
k : L2(µ) → H given by

T
1/2
k f =

∑
i∈I

⟨f , ei ⟩
√

λiei

is an isometric isomorphism.
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Proof. A direct and straightforward argument shows that H is a
complete inner product space under the norm ⟨·, ·⟩H , hence H is a
Hilbert Space.
For x ∈ X , by Mercer’s Theorem, we have that

k(·, x) =
∑
i∈I

√
λiei (x)

√
λiei (·)

showing that k(·, x) ∈ H.

Additionally, for f =
∑
i∈I

ai
√

λiei ∈ H, we have

⟨f , k(·, x)⟩H =
∑
i∈I

ai
√
λiei (x) = f (x), x ∈ X

showing that k is the reproducing kernel of H.
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Let us next examine T
1/2
k .

Fix f ∈ L2(µ).
Since (ei )i∈I is an orthonormal basis of L2(µ), we can write

f =
∑
i∈I

⟨f , ei ⟩L2(µ) ei .

By Parseval’s formula,

∥f ∥2L2(µ) =
∑
i∈I

|⟨f , ei ⟩|2,

showing that (⟨f , ei ⟩)i∈I ⊂ ℓ2(I ).
It follows that

T
1/2
k f =

∑
i∈I

⟨f , ei ⟩
√
λi ei ∈ H.
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Moreover,
∥T 1/2

k f ∥2 =
∑
i∈I

|⟨f , ei ⟩|2 = ∥f ∥2L2(µ),

implying that T
1/2
k is an isometry on H and hence injective.

To show that T
1/2
k is surjective, fix f ∈ H.

By the definition of H, there is a sequence (ai )i∈I ⊂ ℓ2(I ) such

that f (x) =
∑
i∈I

ai
√

λi ei (x).

Also, we have that g :=
∑

i∈I aiei ∈ L2(µ) and, thus,
ai = ⟨g , ei ⟩L2 .
Therefore,

T
1/2
k g(x) =

∑
i∈I

⟨g , ei ⟩L2
√
λi ei (x) =

∑
i∈I

ai
√
λi ei (x) = f (x),

proving that T
1/2
k is surjective.



Universal Kernels

The ‘size’ of the RKHS is a critical issue on the generalization
ability of an SVM since we typically desire a solution space large
enough to give accurate solutions, yet not too large to avoid
over-fitting.

Definition. A continuous kernel k on a compact metric space X is
universal kernel if the RKHS H of k is dense in C (X ), i.e., for
every g ∈ C (X ) and all ϵ > 0, there exists an f ∈ H such that

∥f − g∥∞ ≤ ϵ.

Definition. Let k be a kernel on a metric space X with RKHS H.
We say that k separates the disjoint sets A, B ⊂ X , if there exists
an f ∈ H such that f (x) > 0 for all x ∈ A, and f (x) < 0 for all
x ∈ B. We say that k separates all finite (or compact) sets if k
separates all finite (or compact) disjoints sets A, B ⊂ X .



Universal Kernels

Theorem. Let X be a compact metric space and k a universal
kernel on X . Then k separates all compact sets in X .

Theorem (Test for universality). Let X be a compact metric
space and k a continuous kernel on X with the property that
k(x , x) > 0 for all x ∈ X .
Suppose that we have an injective feature map ΦX :→ ℓ2 and
denote Φ(x) = (ϕ1(x), ϕ2(x), ..., ϕk(x), ...), x ∈ X . If
A = span{ϕn : n ∈ N} is an algebra, then k is universal.



Universal Kernels

Examples of universal Kernels

▶ Polynomial: k(x , x ′) = f (⟨x , x ′⟩) where
f (t) =

∑∞
k=0 akt

k , ak > 0.

▶ Exponential: k(x , x ′) = exp(⟨x , x ′)⟩.
▶ Gaussian RBF: kγ(x , x

′) = exp(−γ2∥x − x ′∥2L)
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