
ORION 2

Reference Manual

Computational Biomedicine Lab

Department of Mathematics

University of Houston





CHAPTER 1

Introduction

ORION II is an application for the automatic segmentation and
tracing of three-dimensional neuronal images. This document briefly
describes its use, as well as the way to train a classifier.

1. System Requirements

This tool was coded in MATLAB R2011b, that requires an x86 pro-
cessor supporting SSE2 instruction sets, and a recommended minimum
of 2GB of RAM. We recommend 1 GB of additional memory for every
10 million voxels on the size of the typical image to be processed.

For a support vector machine engine, we use LIBSVM, that needs
to be available in the system.

2. Input

The solids to be used for sample generation, training or pipelining
should be given in RAW format, with the respective MHD also stored
in the same directory.

3. Ouptut

On this section, we assume the settings as specified in the examples
above. Every RAW solid will be accompanied by the corresponding
MHD.

For the pipeline script, the outputs for the file OP1.raw, would be
OP1_dOP_BIN.raw (binary solid), OP1_dOP_PRB.raw (probability solid),
OP1_dOP_BIN_CL.swc (centerline file).

For the train script. the output would be the file diademOP.mat,
containing a struct called model, containing training specifications (so
they can be used also for pipelining), and the classifier.

For the index script, when the Laplacian solids are generated, these
will be OP1_NLAP.raw and OP1_PLAP.raw. Also, the index solids,
containing the positive and negative samples, respectively OP1_P and
OP1_N. It also leaves in memory the variables ’p’ and ’n’ containing,
respectively, the number of positive and negative samples. The index

3

http://www.csie.ntu.edu.tw/~cjlin/libsvm


4 1. INTRODUCTION

solids can be visualized to verify that its accuracy, using a visualization
software, like Avizo.



CHAPTER 2

Index Script

This script allows the user to optimize the parameter for sample
selection.

idx.genLap: This option is a switch that indicates to the soft-
ware, whether or not Laplacian Solids should be generated.
Regardless of whether the boxes or the pos-factors change, as
long as the field exp.lapFact remains unchanged, the Laplacian
solid may be generated only once, and reused. Index gener-
ation may be two orders of magnitud faster if this Laplacian
solid is not generated.

idx.lapFact: List of Laplacian factors to be used in the selec-
tion of samples. Each number needs should be strictly con-
tained between 0 and 1.

idx.boxes: Cell of arrays of coordinates of the boxes where the
samples are going to be selected. One array for each solid used
for training. Each array should be an mx6 matrix, where m is
the number of regions from where the samples are to be taken.
Each row contains the coordinates on one of such boxes, given
in the format xMin, xMax, yMin, yMax, zMin, zMax.

idx.pos: Cell of arrays of the percentage parameters for the
boxes where the samples are going to be selected. One ar-
ray for each solid used for training. Each array should be an

5



6 2. INDEX SCRIPT

mx2 matrix, where m is the number of regions from where the
samples are to be taken. Each row contains the percentage
parameters on one of such boxes, given in the format posi-
tivePercentage, negativePercentage. Each of these paramters
should be strictly contained between 0 and 100, but typically
it is contained between 0.5 and 2.

idx.nameList: Cell containing the file name of each individual
solid to be used for training.

idx.pathList: Cell containing the path of each individual solid
to be used for training.

When the script is executed, the variables ’p’ and ’n’ are left on
memory, and they represent the number of positive and negative sam-
ples, and its addition is the total number of samples.

1. Index Generation Strategy

The Index Generation is the only part of the process that is inter-
active. Once the Laplacian solids have been generated once, change
the value of idx.genLap to false. It will save execution time.

The coordinates of the boxes should be chosen in such a way that
the regions they cover are representative of the structure as a whole.

Once these boxes have been chosen, the parameters (idx.pos), have
to be chosen in such a way that they genereate as many samples as pos-
sible, but minimizing or eliminating false positive or negative samples.
In Figure 1, the subfigure 1(c) shows and undersampling for positive
samples in a region of the solid. This means, the pos parameter as-
sociated (in the first column) is too low. Subfigure 1(d) shows an
oversampling, where there are visible false positives, implying a pos
parameter too high. Subfigure 1(b) shows what the operator deemed
as a satisfactory sampling.

Once these samples have been generated, the settings can be copied
into the respective fields in the Train Script.



1. INDEX GENERATION STRATEGY 7

(a) (b)

(c) (d)

Figure 1. Section of a solid with different positive sam-
ple settings. (a) Raw solid without samples. (b) Raw
solid with seetings deemed appropriate. (c) Raw solid
with settings causing undersampling. (d) Raw solid with
settings causing oversampling.



CHAPTER 3

Train Script

This script allows the user to set up the options necessary to train a
new classifier. Several of the parameters can be first optimized by using
idxScript, and later copied to this in particular, exp.lapFact, exp.boxes

modelPath: Directory where the classifier is going to be stored.
modelName: Name of the file where the classifier is going to be

stored.
model.suffix: Suffix to be included as a field in the model pack-

age. When the pipeline script is run, this suffix will be added
to the files segmented.

8



3. TRAIN SCRIPT 9

maxNoise: The maximum size of a disconnected particle in the
solid, that will be considered as noise.

exp.genLap: This option is a switch that indicates to the soft-
ware, whether or not Laplacian Solids should be generated.
Regardless of whether the boxes or the pos-factors change, as
long as the field exp.lapFact remains unchanged, the Laplacian
solid may be generated only once, and reused. Index gener-
ation may be two orders of magnitud faster if this Laplacian
solid is not generated.

exp.lapFact: List of Laplacian factors to be used in the selec-
tion of samples. Each number needs should be strictly con-
tained between 0 and 1.

exp.boxes: Cell of arrays of coordinates of the boxes where the
samples are going to be selected. One array for each solid used
for training. Each array should be an mx6 matrix, where m is
the number of regions from where the samples are to be taken.
Each row contains the coordinates on one of such boxes, given
in the format xMin, xMax, yMin, yMax, zMin, zMax.

exp.pos: Cell of arrays of the percentage parameters for the
boxes where the samples are going to be selected. One ar-
ray for each solid used for training. Each array should be an
mx2 matrix, where m is the number of regions from where the
samples are to be taken. Each row contains the percentage
parameters on one of such boxes, given in the format posi-
tivePercentage, negativePercentage. Each of these paramters
should be strictly contained between 0 and 100, but typically
it is contained between 0.5 and 2.

exp.nameList: Cell containing the file name of each individual
solid to be used for training.

exp.pathList: Cell containing the path of each individual solid
to be used for training.

exp.featType: Cell containing the specifications of the types
of features to be used for training. There are three types of
features implemented: ’Lap’ (Laplacian), ’LP’ for Low Pass,
’HP’ for High Pass.

exp.featParam: Cell containing the parameter arrays for each
of the feature type to be used. These parameters are strictly
contained between 0 and 1. For Laplacian and Low Pass fea-
tures, the array should be a one column vector with as many
entries as features of that type are to be produced, and a High
Pass feature should be a two column matrix, with as many



10 3. TRAIN SCRIPT

rows as features of the type are to be produced. The second
element on every row should be strictly smaller than the first.

exp.spBySize: Boolean that specifies if the sample set should
be partitioned on pieces of a specific size. At least one of the
booleans exp.spBySize and exp.spByQuan should be true.

exp.spByQuan: Boolean that specifies if the sample set should
be partitioned on a specific number of pieces. At least one
of the booleans exp.spBySize and exp.spByQuan should be
true.

exp.prtSiz: If exp.spBySize = true, exp.prtSiz, then rep-
resents the size of each partition of the sample set. If both
exp.spBySize and exp.spByQuan are true, then the product
of exp.prtSiz and exp.numPrt shuold be less than or equal
to the number of samples. We recommend exp.prtSiz to be
as large as possible, allowing at least a four fold validation.

exp.numPrt: If exp.spByQuan = true, exp.numPrt, then rep-
resents the number of partitions of the sample set. If both
exp.spBySize and exp.spByQuan are true, then the product of
exp.prtSiz and exp.numPrt shuold be less than or equal to the
number of samples. We recommend exp.numPrt to be between
four and ten.

exp.numExp: Number of experiments to be ran to find the opti-
mal parameters for the SVM classifier.



CHAPTER 4

Pipeline Script

If an SVM classifier is already available, the file ’pipelineScript.m’
can be configured to process one or multiple files. At this point, it is
assumed that a classifier has been trained. Six options are necessary
for execution:

prd.nameList: Cell containing the file name of each individual
solid to be process.

prd.PathList: Cell containing the path of each individual solid
to be process.

prd.modName: Name of the file where the classifier is stored.
prd.modPath: Directory where the classifier is stored.
zSmearFactor: If the zSmear Factor is known to the user, it can

be entered here. If it is not known, we recommend to use 1 as
a default.

clSuffix: A sufix to be added to the centerline output file. (It
may be an empty string, but it has to be specified.)

11


	Chapter 1. Introduction
	1. System Requirements
	2. Input
	3. Ouptut

	Chapter 2. Index Script
	1. Index Generation Strategy

	Chapter 3. Train Script
	Chapter 4. Pipeline Script

