Sequences

- 2. Mark each statement True or False. Justify each answer.
 - (a) If a convergent sequence is bounded, then it is monotone.
 - (b) If (s_n) is an unbounded increasing sequence, then $\lim s_n = +\infty$.
 - (c) The Cauchy convergence criterion holds in \mathbb{Q} , the ordered field of rational numbers.
- 3. Prove that each sequence is monotone and bounded. Then find the limit. \Rightarrow

(a)
$$s_1 = 1$$
 and $s_{n+1} = \frac{1}{5}(s_n + 7)$ for $n \ge 1$

- (b) $s_1 = 2$ and $s_{n+1} = \frac{1}{5}(s_n + 7)$ for $n \ge 1$.
- (c) $s_1 = 2$ and $s_{n+1} = \frac{1}{4}(2s_n + 7)$ for $n \ge 1$.
- (d) $s_1 = 1$ and $s_{n+1} = \sqrt{2s_n + 2}$ for $n \ge 1$.
- (e) $s_1 = 5$ and $s_{n+1} = \sqrt{4s_n + 1}$ for $n \ge 1$.
- 4. Find an example of a sequence of real numbers satisfying each set of properties.
 - (a) Cauchy, but not monotone
 - (b) Monotone, but not Cauchy
 - (c) Bounded, but not Cauchy
- 5. Let (a_n) and (b_n) be monotone sequences. Prove or give a counterexample.
 - (a) The sequence (c_n) given by $c_n = a_n + b_n$ is monotone.
 - (b) The sequence (c_n) given by $c_n = a_n \cdot b_n$ is monotone.
- 6. Let (a_n) and (b_n) be monotone sequences. Prove or give a counterexample.
 - (a) The sequence (c_n) given by $c_n = ka_n$ is monotone for any $k \in \mathbb{R}$.
 - (b) The sequence (c_n) given by $c_n = a_n/b_n$ is monotone, where $b_n \neq 0$ for all $n \in \mathbb{N}$.
- 7. Let $s_1 = \sqrt{6}$, $s_2 = \sqrt{6 + \sqrt{6}}$, $s_3 = \sqrt{6 + \sqrt{6 + \sqrt{6}}}$, and in general define $s_{n+1} = \sqrt{6 + s_n}$. Prove that (s_n) converges, and find its limit.
- 8. Let $s_1 = k$ and define $s_{n+1} = \sqrt{4s_n 1}$ for $n \ge 1$. Determine for what values of *k* the sequence (s_n) will be monotone increasing and for what values of *k* it will be monotone decreasing.
- **9.** Suppose x > 0. Define a sequence (s_n) by $s_1 = k$ and $s_{n+1} = (s_n^2 + x)/(2s_n)$ for $n \in \mathbb{N}$. Prove that for any k > 0, $\lim s_n = \sqrt{x}$.
- 10. (a) Suppose that |r| < 1. Also, we know that

$$1+r+r^2+\cdots+r^n = \frac{1-r^{n+1}}{1-r}.$$

Find $\lim_{n\to\infty} (1+r+r^2+\cdots+r^n)$.

(b) If we let the infinite repeating decimal 0.9999... stand for the limit

Sequences

4. For each sequence, find the set *S* of subsequential limits, the limit superior, and the limit inferior.

(a)
$$w_n = \frac{(-1)^n}{n}$$

(b) $(x_n) = (0, 1, 2, 0, 1, 3, 0, 1, 4, ...)$
(c) $y_n = n[2 + (-1)^n]$
(d) $z_n = (-n)^n$

5. Use Exercise 3.14 to find the limit of each sequence. \Rightarrow

(a)
$$s_n = \left(1 + \frac{1}{2n}\right)^{2n}$$

(b) $s_n = \left(1 + \frac{1}{n}\right)^{2n}$
(c) $s_n = \left(1 + \frac{1}{n}\right)^{n-1}$
(d) $s_n = \left(\frac{n}{n+1}\right)^n$
(e) $s_n = \left(1 + \frac{1}{2n}\right)^n$
(f) $s_n = \left(\frac{n+2}{n+1}\right)^{n+2}$

- 6. Prove or give a counterexample.
 - (a) Every oscillating sequence has a convergent subsequence.
 - (b) Every oscillating sequence diverges.
 - (c) Every divergent sequence oscillates.
- 7. Prove or give a counterexample.
 - (a) Every bounded sequence has a Cauchy subsequence.
 - (b) Every monotone sequence has a bounded subsequence.
 - (c) Every convergent sequence can be represented as the sum of two oscillating sequences.
- 8. If (s_n) is a subsequence of (t_n) and (t_n) is a subsequence of (s_n) , can we conclude that $(s_n) = (t_n)$? Prove or give a counterexample.
- **9.** Let (s_n) be a bounded sequence and suppose that $\lim s_n = \lim s_n = s$. Prove that (s_n) is convergent and that $\lim s_n = s$.
- *10. Suppose that x > 1. Prove that $\lim x^{1/n} = 1$.
- 11. Let (s_n) be a bounded sequence and let S denote the set of subsequential limits of (s_n) . Prove that S is closed. \Rightarrow
- 12. Let A = {x ∈ Q: 0 ≤ x < 2}. Since A is denumerable, there exists a bijection s: N → A. Letting s(n) = s_n, find the set of subsequential limits of the sequence (s_n).
- **13.** Let (s_n) and (t_n) be bounded sequences.
 - (a) Prove that $\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n$.