2. Mark each statement True or False. Justify each answer.
(a) If a convergent sequence is bounded, then it is monotone.
(b) If $\left(s_{n}\right)$ is an unbounded increasing sequence, then $\lim s_{n}=+\infty$.
(c) The Cauchy convergence criterion holds in \mathbb{Q}, the ordered field of rational numbers.
3. Prove that each sequence is monotone and bounded. Then find the limit. is
(a) $s_{1}=1$ and $s_{n+1}=\frac{1}{5}\left(s_{n}+7\right)$ for $n \geq 1$.
(b) $s_{1}=2$ and $s_{n+1}=\frac{1}{5}\left(s_{n}+7\right)$ for $n \geq 1$.
(c) $s_{1}=2$ and $s_{n+1}=\frac{1}{4}\left(2 s_{n}+7\right)$ for $n \geq 1$.
(d) $s_{1}=1$ and $s_{n+1}=\sqrt{2 s_{n}+2}$ for $n \geq 1$.
(e) $s_{1}=5$ and $s_{n+1}=\sqrt{4 s_{n}+1}$ for $n \geq 1$.
4. Find an example of a sequence of real numbers satisfying each set of properties.
(a) Cauchy, but not monotone
(b) Monotone, but not Cauchy
(c) Bounded, but not Cauchy
5. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be monotone sequences. Prove or give a counterexample.
(a) The sequence $\left(c_{n}\right)$ given by $c_{n}=a_{n}+b_{n}$ is monotone.
(b) The sequence (c_{n}) given by $c_{n}=a_{n} \cdot b_{n}$ is monotone.
6. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be monotone sequences. Prove or give a counterexample.
(a) The sequence $\left(c_{n}\right)$ given by $c_{n}=k a_{n}$ is monotone for any $k \in \mathbb{R}$.
(b) The sequence (c_{n}) given by $c_{n}=a_{n} / b_{n}$ is monotone, where $b_{n} \neq 0$ for all $n \in \mathbb{N}$.
7. Let $s_{1}=\sqrt{6}, s_{2}=\sqrt{6+\sqrt{6}}, s_{3}=\sqrt{6+\sqrt{6+\sqrt{6}}}$, and in general define s_{n+1} $=\sqrt{6+s_{n}}$. Prove that $\left(s_{n}\right)$ converges, and find its limit.
8. Let $s_{1}=k$ and define $s_{n+1}=\sqrt{4 s_{n}-1}$ for $n \geq 1$. Determine for what values of k the sequence $\left(s_{n}\right)$ will be monotone increasing and for what values of k it will be monotone decreasing.
9. Suppose $x>0$. Define a sequence $\left(s_{n}\right)$ by $s_{1}=k$ and $s_{n+1}=\left(s_{n}^{2}+x\right) /\left(2 s_{n}\right)$ for $n \in \mathbb{N}$. Prove that for any $k>0, \lim s_{n}=\sqrt{x}$. $\hat{\text { ts }}$
10. (a) Suppose that $|r|<1$. Also, we know that

$$
1+r+r^{2}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

Find $\lim _{n \rightarrow \infty}\left(1+r+r^{2}+\cdots+r^{n}\right)$.
(b) If we let the infinite repeating decimal $0.9999 \cdots$ stand for the limit
4. For each sequence, find the set S of subsequential limits, the limit superior, and the limit inferior.
(a) $w_{n}=\frac{(-1)^{n}}{n}$
(b) $\left(x_{n}\right)=(0,1,2,0,1,3,0,1,4, \ldots)$
(c) $y_{n}=n\left[2+(-1)^{n}\right]$
(d) $z_{n}=(-n)^{n}$
5. Use Exercise 3.14 to find the limit of each sequence. is
(a) $s_{n}=\left(1+\frac{1}{2 n}\right)^{2 n}$
(b) $s_{n}=\left(1+\frac{1}{n}\right)^{2 n}$
(c) $s_{n}=\left(1+\frac{1}{n}\right)^{n-1}$
(d) $s_{n}=\left(\frac{n}{n+1}\right)^{n}$
(e) $s_{n}=\left(1+\frac{1}{2 n}\right)^{n}$
(f) $\quad s_{n}=\left(\frac{n+2}{n+1}\right)^{n+3}$
6. Prove or give a counterexample.
(a) Every oscillating sequence has a convergent subsequence.
(b) Every oscillating sequence diverges.
(c) Every divergent sequence oscillates.
7. Prove or give a counterexample.
(a) Every bounded sequence has a Cauchy subsequence.
(b) Every monotone sequence has a bounded subsequence.
(c) Every convergent sequence can be represented as the sum of two oscillating sequences.
8. If $\left(s_{n}\right)$ is a subsequence of $\left(t_{n}\right)$ and $\left(t_{n}\right)$ is a subsequence of $\left(s_{n}\right)$, can we conclude that $\left(s_{n}\right)=\left(t_{n}\right)$? Prove or give a counterexample.
9. Let $\left(s_{n}\right)$ be a bounded sequence and suppose that $\lim \inf s_{n}=\lim \sup s_{n}=s$. Prove that $\left(s_{n}\right)$ is convergent and that $\lim s_{n}=s$. λ
*10. Suppose that $x>1$. Prove that $\lim x^{1 / n}=1$.
11. Let $\left(s_{n}\right)$ be a bounded sequence and let S denote the set of subsequential limits of $\left(s_{n}\right)$. Prove that S is closed. it
12. Let $A=\{x \in \mathbb{Q}: 0 \leq x<2\}$. Since A is denumerable, there exists a bijection $s: \mathbb{N} \rightarrow A$. Letting $s(n)=s_{n}$, find the set of subsequential limits of the sequence $\left(s_{n}\right)$.
13. Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be bounded sequences.
(a) Prove that $\lim \sup \left(s_{n}+t_{n}\right) \leq \lim \sup s_{n}+\lim \sup t_{n}$. के

