Sequences

4. For each sequence, find the set *S* of subsequential limits, the limit superior, and the limit inferior.

(a)
$$w_n = \frac{(-1)^n}{n}$$

(b) $(x_n) = (0, 1, 2, 0, 1, 3, 0, 1, 4, ...)$
(c) $y_n = n[2 + (-1)^n]$
(d) $z_n = (-n)^n$

5. Use Exercise 3.14 to find the limit of each sequence. \Rightarrow

(a)
$$s_n = \left(1 + \frac{1}{2n}\right)^{2n}$$

(b) $s_n = \left(1 + \frac{1}{n}\right)^{2n}$
(c) $s_n = \left(1 + \frac{1}{n}\right)^{n-1}$
(d) $s_n = \left(\frac{n}{n+1}\right)^n$
(e) $s_n = \left(1 + \frac{1}{2n}\right)^n$
(f) $s_n = \left(\frac{n+2}{n+1}\right)^{n+2}$

- 6. Prove or give a counterexample.
 - (a) Every oscillating sequence has a convergent subsequence.
 - (b) Every oscillating sequence diverges.
 - (c) Every divergent sequence oscillates.
- 7. Prove or give a counterexample.
 - (a) Every bounded sequence has a Cauchy subsequence.
 - (b) Every monotone sequence has a bounded subsequence.
 - (c) Every convergent sequence can be represented as the sum of two oscillating sequences.
- 8. If (s_n) is a subsequence of (t_n) and (t_n) is a subsequence of (s_n) , can we conclude that $(s_n) = (t_n)$? Prove or give a counterexample.
- **9.** Let (s_n) be a bounded sequence and suppose that $\lim s_n = \lim s_n = s$. Prove that (s_n) is convergent and that $\lim s_n = s$.
- *10. Suppose that x > 1. Prove that $\lim x^{1/n} = 1$.
- 11. Let (s_n) be a bounded sequence and let S denote the set of subsequential limits of (s_n) . Prove that S is closed. \Rightarrow
- 12. Let A = {x ∈ Q: 0 ≤ x < 2}. Since A is denumerable, there exists a bijection s: N → A. Letting s(n) = s_n, find the set of subsequential limits of the sequence (s_n).
- **13.** Let (s_n) and (t_n) be bounded sequences.
 - (a) Prove that $\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n$.

Sequences

- (b) Find an example to show that equality may not hold in part (a).
- 14. State and prove the analog of Theorem 4.11 for lim inf.
- **15.** Let (s_n) and (t_n) be bounded sequences.
 - (a) Prove that $\liminf s_n + \liminf t_n \leq \liminf (s_n + t_n)$.
 - (b) Find an example to show that equality may not hold in part (a).
- **16.** Let (s_n) be a bounded sequence.
 - (a) Prove that $\limsup s_n = \lim_{N \to \infty} \sup \{s_n : n > N\}$.
 - (b) Prove that $\liminf s_n = \lim_{N \to \infty} \inf \{s_n : n > N\}$.
- *17. Prove that if $\limsup s_n = +\infty$ and k > 0, then $\limsup (ks_n) = +\infty$.
- **18.** Let C be a nonempty subset of \mathbb{R} . Prove that C is compact iff every sequence in C has a subsequence that converges to a point in C.
- **19.** Prove that every sequence has a monotone subsequence.

Hints for Selected Exercises

Section 1

- **3.** (a) 1, 4, 9, 16, 25, 36, 49; (c) $\frac{1}{2}$, $-\frac{1}{2}$, -1, $-\frac{1}{2}$, $\frac{1}{2}$, 1, $\frac{1}{2}$.
- 7. (d) $\sqrt{n}/(n+1) < \sqrt{n}/n = 1/\sqrt{n}$.
 - (f) Suppose first that $x \neq 0$. Since |x| < 1, |x| = 1/(1 + y) for some y > 0. Use Bernoulii's inequality to obtain the bound $|x^n| = 1/(1 + y)^n < 1/(ny)$. The case when x = 0 is trivial.
- 9. (a) True
 - (b) False; (c) True.
- **13.** Use the fact that $a_n \to b$ and $c_n \to b$ to show that given any $\varepsilon > 0$, there exists a natural number N such that $b \varepsilon < a_n \le b_n \le c_n < b + \varepsilon$, whenever $n \ge N$. Note that this N must work for *both* sequences (a_n) and (c_n) .
- 15. (a) Suppose that (s_n) is a sequence in S \ {x} such that s_n → x. Given any deleted neighborhood N*(x; ε), find an integer k such that s_k ∈ N*(x; ε). For the converse, suppose that x is an accumulation point of S. Given any ε > 0, there exists a point in S ∩ N*(x; ε). Thus for each n ∈ N there exists a point, say s_n, in S ∩ N*(x; 1/n). Clearly, s_n ∈ S \ {x} for all n. Now show that s_n → x. Note that this half of the argument uses the axiom of choice.
- 17. Let $t_n = (s_n s)/(s_n + s)$ and solve for s_n .

Infinite Series

- (b) Suppose that $m \in \mathbb{N}$ with m > 1 and that $\sum_{n=m}^{\infty} a_n$ is convergent. If a_1, \ldots, a_{m-1} are real numbers, prove that $\sum_{n=1}^{\infty} a_n$ is convergent and that $\sum_{n=1}^{\infty} a_n = a_1 + \cdots + a_{m-1} + \sum_{n=m}^{\infty} a_n$.
- 4. Show that each series is divergent.

(a)
$$\sum (-1)^n$$
 (b) $\sum \frac{n}{2n+1}$
(c) $\sum \frac{n}{\sqrt{n^2+1}}$ (d) $\sum \cos \frac{n\pi}{2}$

- **5.** Find the sum of each series. \Rightarrow
 - (a) $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$ (b) $\sum_{n=3}^{\infty} \left(\frac{1}{2}\right)^n$ (c) $\sum_{n=0}^{\infty} 2\left(-\frac{1}{2}\right)^n$ (d) $\sum_{n=1}^{\infty} \left(-\frac{3}{4}\right)^n$ (e) $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$ (f) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$ (g) $\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)}$ (h) $\sum_{n=1}^{\infty} \frac{2}{n^2+2n}$ (i) $\sum_{n=1}^{\infty} \frac{1}{n^2+3n+2}$ (j) $\sum_{n=3}^{\infty} \frac{1}{n(n+1)}$ (k) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$ (l) $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+k)!}$ where $k \in \mathbb{N}$ is fixed.
- 6. Prove Theorem 1.4.
- *7. Given the series $\sum a_n$ and $\sum b_n$, suppose that there exists a natural number N such that $a_n = b_n$ for all $n \ge N$. Prove that $\sum a_n$ is convergent iff $\sum b_n$ is convergent. Thus the convergence of a series is not affected by changing a finite number of terms. (Of course, the value of the sum may change.) \Rightarrow
- *8. Let (a_n) be a sequence of nonnegative real numbers. Prove that $\sum a_n$ converges iff the sequence of partial sums is bounded.
- 9. Determine whether or not the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}} + \sqrt{n}$ converges. Justify your answer.
- **10.** Let (x_n) be a sequence of real numbers and let $y_n = x_n x_{n+1}$ for each $n \in \mathbb{N}$.
 - (a) Prove that the series $\sum_{n=1}^{\infty} y_n$ converges iff the sequence (x_n) converges.
 - (b) If $\sum_{n=1}^{\infty} y_n$ converges, what is the sum?